【題目】已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點(diǎn)M
(1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
(2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過(guò)M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程.
【答案】(1)(2)
【解析】(1)由題意畫出簡(jiǎn)圖為:
由于拋物線C1:x2=y準(zhǔn)線方程為:y=﹣,圓C2:x2+(y﹣4)2=1的圓心M(0,4),
利用點(diǎn)到直線的距離公式可以得到距離d==.
(2)設(shè)點(diǎn)P(x0,x02),A(x1,x12),B(x2,x22);
由題意得:x0≠0,x2≠±1,x1≠x2,
設(shè)過(guò)點(diǎn)P的圓c2的切線方程為:y﹣x02=k(x﹣x0)即y=kx﹣kx0+x02①
則,即(x02﹣1)k2+2x0(4﹣x02)k+(x02﹣4)2﹣1=0
設(shè)PA,PB的斜率為k1,k2(k1≠k2),則k1,k2應(yīng)該為上述方程的兩個(gè)根,
∴,;
代入①得:x2﹣kx+kx0﹣x02="0" 則x1,x2應(yīng)為此方程的兩個(gè)根,
故x1=k1﹣x0,x2=k2﹣x0
∴kAB=x1+x2=k1+k2﹣2x0=
由于MP⊥AB,∴kABKMP=﹣1
故P∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某山區(qū)養(yǎng)殖場(chǎng)散養(yǎng)的3500頭豬中隨機(jī)抽取5頭,測(cè)量豬的體長(zhǎng)x(cm)和體重y(kg),得如下測(cè)量數(shù)據(jù):
豬編號(hào) | 1 | 2 | 3 | 4 | 5 |
x | 169 | 181 | 166 | 185 | 180 |
y | 95 | 100 | 97 | 103 | 101 |
(1)當(dāng)且僅當(dāng)x,y滿足:x≥180且y≥100時(shí),該豬為優(yōu)等品,用上述樣本數(shù)據(jù)估計(jì)山區(qū)養(yǎng)殖場(chǎng)散養(yǎng)的3500頭豬中優(yōu)等品的數(shù)量;
(2)從抽取的上述5頭豬中,隨機(jī)抽取2頭中優(yōu)等品數(shù)x的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)的基本保費(fèi)為a(單位:元),繼續(xù)購(gòu)買該保險(xiǎn)的投保人成為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:
上年度出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費(fèi) | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險(xiǎn)次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(1)求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;
(2)若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi),求其保費(fèi)比基本保費(fèi)高出60%的概率;
(3)求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某廣場(chǎng)中間有一塊邊長(zhǎng)為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC= .管理部門欲在該地從M到D修建小路:在 上選一點(diǎn)P(異于M,N兩點(diǎn)),過(guò)點(diǎn)P修建與BC平行的小路PQ.
(1)若∠PBC= ,求PQ的長(zhǎng)度;
(2)當(dāng)點(diǎn)P選擇在何處時(shí),才能使得修建的小路 與PQ及QD的總長(zhǎng)最小?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知整數(shù)n≥4,集合M={1,2,3,…,n}的所有含有4個(gè)元素的子集記為A1 , A2 , A3 , …, .
設(shè)A1 , A2 , A3 , …, 中所有元素之和為Sn .
(1)求S4 , S5 , S6并求出Sn;
(2)證明:S4+S5+…+Sn=10Cn+26 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 , 是非零不共線的向量,設(shè) = + ,定義點(diǎn)集M={K| = },當(dāng)K1 , K2∈M時(shí),若對(duì)于任意的r≥2,不等式| |≤c| |恒成立,則實(shí)數(shù)c的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: + =1,圓C2:x2+y2=t經(jīng)過(guò)橢圓C1的焦點(diǎn).
(1)設(shè)P為橢圓上任意一點(diǎn),過(guò)點(diǎn)P作圓C2的切線,切點(diǎn)為Q,求△POQ面積的取值范圍,其中O為坐標(biāo)原點(diǎn);
(2)過(guò)點(diǎn)M(﹣1,0)的直線l與曲線C1 , C2自上而下依次交于點(diǎn)A,B,C,D,若|AB|=|CD|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面,,,,,是的中點(diǎn).
(1)求證:;
(2)求證:面;
(3)求二面角E-AB-C的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com