【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測(cè)出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表是甲流水線樣本的頻數(shù)分布表,圖是乙流水線樣本的頻率分布直方圖.
表:甲流水線樣本的頻數(shù)分布表 | ||||||||||||
|
圖:乙流水線樣本頻率分布直方圖 |
(Ⅰ)根據(jù)圖,估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù).
(Ⅱ)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件.
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
附: (其中樣本容量)
【答案】(1)(2), .(3)沒有的把握
【解析】試題分析:(1)根據(jù)中位數(shù)對(duì)應(yīng)概率為0.5,列式,解方程可得中位數(shù)(2)根據(jù)概率等于頻數(shù)與總數(shù)的比值先估計(jì)甲乙流水線生產(chǎn)的產(chǎn)品為不合格品的概率,再求件產(chǎn)品中不合格品的數(shù)量(3)將數(shù)據(jù)代入卡方公式計(jì)算,再與參考數(shù)據(jù)比較確定把握性
試題解析:(Ⅰ)設(shè)乙流水線生產(chǎn)產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的中位數(shù)為,因?yàn)?/span>,
則,
解得.
(Ⅱ)由甲,乙兩條流水線各抽取的件產(chǎn)品可得,甲流水線生產(chǎn)的不合格品有件,則甲流水線生產(chǎn)的產(chǎn)品為不合格品的概率為
乙流水線生產(chǎn)的產(chǎn)品為不合格品的概率為
于是,若某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了件產(chǎn)品,則甲乙兩條流水線生產(chǎn)的不合格品件數(shù)分別為, .
(Ⅲ)列聯(lián)表:
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計(jì) | |
合格品 | |||
不合格品 | |||
合計(jì) |
則,
因?yàn)?/span>,
所以沒有的把握認(rèn)為“該企業(yè)生產(chǎn)的這種產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}中a2=2,a5= ,則a1a2+a2a3+a3a4+…+anan+1等于( )
A.16(1﹣4﹣n)
B.16(1﹣2n)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2cosAcosC(1-tanAtanC)=1.
(1)求B的大。
(2)若b=,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1 .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式.
(2)設(shè)cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是A,B,C的對(duì)邊,且 sinA= .
(1)若a2﹣c2=b2﹣mbc,求實(shí)數(shù)m的值;
(2)若a=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實(shí)際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機(jī)抽取100個(gè)農(nóng)戶,考察每個(gè)農(nóng)戶的年收入與年積蓄的情況進(jìn)行分析,設(shè)第i個(gè)農(nóng)戶的年收入xi(萬元),年積蓄yi(萬元),經(jīng)過數(shù)據(jù)處理得 . (Ⅰ)已知家庭的年結(jié)余y對(duì)年收入x具有線性相關(guān)關(guān)系,求線性回歸方程;
(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在5萬以上,即稱該農(nóng)戶已達(dá)小康生活,請(qǐng)預(yù)測(cè)農(nóng)戶達(dá)到小康生活的最低年收入應(yīng)為多少萬元?
附:在 = x+ 中, = , = ﹣ ,其中 為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)動(dòng)點(diǎn)P在圓x2+y2=36上移動(dòng),它與定點(diǎn)Q(4,0)所連線段的中點(diǎn)為M.
(1)求點(diǎn)M的軌跡方程.
(2)過定點(diǎn)(0,﹣3)的直線l與點(diǎn)M的軌跡交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2)且滿足 + = ,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com