【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)若E是側(cè)棱上的一點(diǎn),且與底面所成的是為45°,求二面角的余弦值.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).
【解析】
(Ⅰ)由余弦定理得的長(zhǎng),利用勾股定理,證得,再由底面,得到,從而證得平面,進(jìn)而得到平面平面.
(Ⅱ)以A為坐標(biāo)原點(diǎn),,,所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)向量的夾角公式,求得,得到,進(jìn)而求得平面和平面的法向量,利用向量的夾角公式,即可求解.
(Ⅰ)在平行四邊形中,,,,
由余弦定理得,
可得,所以,即,
又底面,底面,所以,
又 所以平面,
又平面,所以平面平面.
(Ⅱ)如圖所示,以A為坐標(biāo)原點(diǎn),,,所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則,,,,,
設(shè),,
因?yàn)?/span>,,
又因?yàn)?/span>,所以,
又由平面的一個(gè)法向量為,
所以,
解得,即,
設(shè)平面的法向量為,平面的法向量為,
由,,
因?yàn)?/span>,,可得,取,得,
同理可得 ,
由,
因?yàn)槎娼?/span>為鈍角,所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一所示,四邊形是邊長(zhǎng)為的正方形,沿將點(diǎn)翻折到點(diǎn)位置(如圖二所示),使得二面角成直二面角.,分別為,的中點(diǎn).
(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形區(qū)域OABC內(nèi)有以OA為半徑的圓弧.現(xiàn)決定從AB邊上一點(diǎn)D引一條線段DE與圓弧相切于點(diǎn)E,從而將正方形區(qū)域OABC分成三塊:扇形COE為區(qū)域I,四邊形OADE為區(qū)域II,剩下的CBDE為區(qū)域III.區(qū)域I內(nèi)栽樹(shù),區(qū)域II內(nèi)種花,區(qū)域III內(nèi)植草.每單位平方的樹(shù)、花、草所需費(fèi)用分別為、、,總造價(jià)是W,設(shè)
(1)分別用表示區(qū)域I、II、III的面積;
(2)將總造價(jià)W表示為的函數(shù),并寫(xiě)出定義域;
(3)求為何值時(shí),總造價(jià)W取最小值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】5人并排站成一行,如果甲乙兩人不相鄰,那么不同的排法種數(shù)是__________.(用數(shù)字作答);5人并排站成一行,甲乙兩人之間恰好有一人的概率是__________(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在處的切線方程為,求的值;
(2)求函數(shù)的極值點(diǎn);
(3)設(shè),若當(dāng)時(shí),不等式恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出曲線的直角坐標(biāo)方程,并求時(shí)直線的普通方程;
(2)若直線和曲線交于兩點(diǎn),點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)為,,過(guò)垂直于長(zhǎng)軸的直線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)過(guò)的直線與橢圓交于不同的兩點(diǎn)、,則的內(nèi)切圓的面積是否存在最大值?若存在求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天干地支紀(jì)年法,源于中國(guó).中國(guó)自古便有十天干與十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來(lái),天干在前,地支在后,天干由“甲”起,地支由“子”起,比如說(shuō)第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”… …依此類(lèi)推,排列到“癸酉”后,天干回到“甲”重新開(kāi)始,即“甲戌”“乙亥”,之后地支回到“子”重新開(kāi)始,即“丙子”… …依此類(lèi)推.1911年中國(guó)爆發(fā)推翻清朝專(zhuān)制帝制、建立共和政體的全國(guó)性革命,這一年是辛亥年,史稱(chēng)“辛亥革命”.1949新中國(guó)成立,請(qǐng)推算新中國(guó)成立的年份為( )
A.己丑年B.己酉年
C.丙寅年D.甲寅年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求的單調(diào)性和極值;
(Ⅱ)若函數(shù)至少有1個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com