【題目】定義在上的函數(shù),單調(diào)遞增,,若對(duì)任意,存在,使得成立,則稱(chēng)上的“追逐函數(shù)”.若,則下列四個(gè)命題:①上的“追逐函數(shù)”;②若上的“追逐函數(shù)”,則;③上的“追逐函數(shù)”;④當(dāng)時(shí),存在,使得上的“追逐函數(shù)”.其中正確命題的個(gè)數(shù)為( )

A. ①③B. ②④C. ①④D. ②③

【答案】B

【解析】

由題意,分析每一個(gè)選項(xiàng),首先判斷單調(diào)性,以及,再假設(shè)是

“追逐函數(shù)”,利用題目已知的性質(zhì),看是否滿(mǎn)足,然后確定答案.

對(duì)于①,可得,是遞增函數(shù),,若上的“追逐函數(shù)”;則存在,使得成立,即 ,此時(shí)當(dāng)k=100時(shí),不存在,故①錯(cuò)誤;

對(duì)于②,若上的“追逐函數(shù)”,此時(shí),解得

,當(dāng)時(shí),,是遞增函數(shù),若是“追逐函數(shù)”

,即,

設(shè)函數(shù)

,則存在,所以②正確;

對(duì)于③,是遞增函數(shù),,若上的“追逐函數(shù)”;則存在,使得成立,即 ,當(dāng)k=4時(shí),就不存在,故③錯(cuò)誤;

對(duì)于④,當(dāng)t=m=1時(shí),就成立,驗(yàn)證如下:

,是遞增函數(shù),,若上的“追逐函數(shù)”;則存在,使得成立,

此時(shí)

,故存在存在,所以④正確;

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱錐中,的中點(diǎn),且,底面邊長(zhǎng),則正三棱錐的外接球的表面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿(mǎn)足Sn=2an-1nN*),數(shù)列{bn}滿(mǎn)足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}{bn}的通項(xiàng)公式;

2)若cn=-1n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;

3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對(duì)任意的nN*,都有DnnSn-a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如表:

年份(年)

維護(hù)費(fèi)(萬(wàn)元)

(I)從這年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有年多于萬(wàn)元的概率;

(II)求關(guān)于的線性回歸方程;若該設(shè)備的價(jià)格是每臺(tái)萬(wàn)元,你認(rèn)為應(yīng)該使用滿(mǎn)五年換一次設(shè)備,還是應(yīng)該使用滿(mǎn)八年換一次設(shè)備?并說(shuō)明理由.

參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論

ACBD;

ACD是等邊三角形;

AB與平面BCD成60°的角;

AB與CD所成的角是60°.

其中正確結(jié)論的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)若處取得極值,求過(guò)點(diǎn)且與處的切線平行的直線方程;

(II)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),且時(shí),總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是雙曲線的右支上一點(diǎn),分別為雙曲線的左右焦點(diǎn),的內(nèi)切圓的圓心橫坐標(biāo)為( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的最大值為.

(1)求實(shí)數(shù)的值;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為2的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為.

(1)求雙曲線的方程;

(2)設(shè)分別為的左右頂點(diǎn),異于一點(diǎn),直線分別交軸于兩點(diǎn),求證:以線段為直徑的圓經(jīng)過(guò)兩個(gè)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案