已知拋物線y2=2px(p>0)上一動點P,拋物線內(nèi)一點A(3,2),F(xiàn)為焦點且|PA|+|PF|的最小值為.(1)求拋物線的方程以及使得|PA|+|PF|取最小值時的P點坐標;(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標,若不是,請說明理由.
【答案】分析:(1)由已知,(|PA|+|PF|)min=3+,由此能求出拋物線方程和P點坐標.
(2)設,,則直線CD的方程為,由PC⊥PD,得y1y2=-8-2(y1+y2),代入直線CD,得,由此知直線CD過定點(4,-2).
解答:解:(1)由已知,(|PA|+|PF|)min=3+
∴p=1,
∴拋物線方程為:y2=2x,
此時P點坐標為(2,2).
(2)設,,
則直線CD的方程為:,
即:
∵PC⊥PD,∴,
∴y1y2=-8-2(y1+y2),
代入直線CD,得,
即:
∴直線CD過定點(4,-2).
點評:本題主要考查直線與圓錐曲線的綜合應用能力,具體涉及到軌跡方程的求法及直線與拋物線的相關知識,解題時要認真審題,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)上一動點P,拋物線內(nèi)一點A(3,2),F(xiàn)為焦點且|PA|+|PF|的最小值為
72

(1)求拋物線的方程以及使得|PA|+|PF|取最小值時的P點坐標;
(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線y2=2px(p>0)上一動點P,拋物線內(nèi)一點A(3,2),F(xiàn)為焦點且|PA|+|PF|的最小值為數(shù)學公式.(1)求拋物線的方程以及使得|PA|+|PF|取最小值時的P點坐標;(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市南開中學高三(下)4月月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知拋物線y2=2px(p>0)上一動點P,拋物線內(nèi)一點A(3,2),F(xiàn)為焦點且|PA|+|PF|的最小值為.(1)求拋物線的方程以及使得|PA|+|PF|取最小值時的P點坐標;(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣西南寧市高三第二次適應性測試數(shù)學試卷(文科)(解析版) 題型:解答題

已知拋物線y2=2px(p>0)上一動點P,拋物線內(nèi)一點A(3,2),F(xiàn)為焦點且|PA|+|PF|的最小值為.(1)求拋物線的方程以及使得|PA|+|PF|取最小值時的P點坐標;(2)過(1)中的P點作兩條互相垂直的直線與拋物線分別交于C、D兩點,直線CD是否過一定點?若是,求出該定點的坐標,若不是,請說明理由.

查看答案和解析>>

同步練習冊答案