精英家教網 > 高中數學 > 題目詳情

【題目】為了節(jié)能減排,發(fā)展低碳經濟,我國政府從2001年起就通過相關扶植政策推動新能源汽車產業(yè)發(fā)展.下面的圖表反映了該產業(yè)發(fā)展的相關信息:

中國新能源汽車產銷情況一覽表

新能源汽車產量

新能源汽車銷量

產量(萬輛)

比上年同期增長(

銷量(萬輛)

比上年同期增長(

2018年3月

6.8

105

6.8

117.4

4月

8.1

117.7

8.2

138.4

5月

9.6

85.6

10.2

125.6

6月

8.6

31.7

8.4

42.9

7月

9

53.6

8.4

47.7

8月

9.9

39

10.1

49.5

9月

12.7

64.4

12.1

54.8

10月

14.6

58.1

13.8

51

11月

17.3

36.9

16.9

37.6

1-12月

127

59.9

125.6

61.7

2019年1月

9.1

113

9.6

138

2月

5.9

50.9

5.3

53.6

2019年2月份新能源汽車銷量結構圖

根據上述圖表信息,下列結論錯誤的是( )

A.2018年4月份我國新能源汽車的銷量高于產量

B.2017年3月份我國新能源汽車的產量不超過3.4萬輛

C.2019年2月份我國插電式混合動力汽車的銷量低于1萬輛

D.2017年我國新能源汽車總銷量超過70萬輛

【答案】C

【解析】

本題首先需要明確題目所給出的信息,能夠看懂題目所給出的表格包含的意思,然后通過“2019年2月份我國新能源汽車的銷量為萬輛”以及插電式混合動力汽車所占的比例即可算出插電式混合動力汽車的銷量,通過比較即可得出結果。

C項:2019年2月份我國新能源汽車的銷量為萬輛,其中插電式混合動力汽車所占的比例為,故插電式混合動力汽車的銷量為,故C項錯誤,故選C。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,已知點,的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和的直角坐標方程;

2)設曲線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行分層抽樣檢查,測得身高情況的統(tǒng)計圖如下:

(1)估計該校男生的人數;并求出

(2)估計該校學生身高在之間的概率;

(3)從樣本中身高在之間的女生中任選2人,求至少有1人身高在之間的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側棱底面,,點的中點.

求證:平面;

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了節(jié)能減排,發(fā)展低碳經濟,我國政府從2001年起就通過相關扶植政策推動新能源汽車產業(yè)發(fā)展.下面的圖表反映了該產業(yè)發(fā)展的相關信息:

2019年2月份新能源汽車銷量結構圖根據上述圖表信息,下列結論錯誤的是( )

A.2018年4月份我國新能源汽車的銷量高于產量

B.2017年3月份我國新能源汽車的產量不超過3.4萬輛

C.2019年2月份我國插電式混合動力汽車的銷量低于1萬輛

D.2017年我國新能源汽車總銷量超過70萬輛

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,左、右焦點分別是,,過的直線與橢圓交于,兩點,且的周長為.

(1)求橢圓的方程;

(2)若點滿足,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線和直線的直角坐標方程;

(Ⅱ)直線軸交點為,經過點的直線與曲線交于,兩點,證明:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應黨中央“扶貧攻堅”的號召,某單位指導一貧困村通過種植紫甘薯來提高經濟收入.紫甘薯對環(huán)境溫度要求較高,根據以往的經驗,隨著溫度的升高,其死亡株數成增長的趨勢.下表給出了2017年種植的一批試驗紫甘薯在溫度升高時6組死亡的株數:

經計算: , , , , ,其中分別為試驗數據中的溫度和死亡株數, .

(1)若用線性回歸模型,求關于的回歸方程(結果精確到);

(2)若用非線性回歸模型求得關于的回歸方程為,且相關指數為.

(i)試與(1)中的回歸模型相比,用說明哪種模型的擬合效果更好;

(ii)用擬合效果好的模型預測溫度為時該批紫甘薯死亡株數(結果取整數).

附:對于一組數據, ,…… ,其回歸直線的斜率和截距的最小二乘估計分別為: ;相關指數為: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校共有學生2000人,其中男生1100人,女生900人為了調查該校學生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學生每周平均課外閱讀時間(單位:小時)

1)應抽查男生與女生各多少人?

2)如圖,根據收集100人的樣本數據,得到學生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數據分組區(qū)間為.若在樣本數據中有38名女學生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均課外閱讀時間與性別有關”.

男生

女生

總計

每周平均課外閱讀時間不超過2小時

每周平均課外閱讀時間超過2小時

總計

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

同步練習冊答案