【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

【答案】(1)的交點(diǎn)坐標(biāo)為, ;(2).

【解析】試題分析:(1)直線與橢圓的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立解交點(diǎn)坐標(biāo);(2)利用橢圓參數(shù)方程,設(shè)點(diǎn),由點(diǎn)到直線距離公式求參數(shù).

試題解析:(1)曲線的普通方程為.

當(dāng)時(shí),直線的普通方程為.

解得.

從而的交點(diǎn)坐標(biāo)為 .

(2)直線的普通方程為,故上的點(diǎn)的距離為

.

當(dāng)時(shí), 的最大值為.由題設(shè)得,所以;

當(dāng)時(shí), 的最大值為.由題設(shè)得,所以.

綜上, .

點(diǎn)睛:本題為選修內(nèi)容,先把直線與橢圓的參數(shù)方程化為直角坐標(biāo)方程,聯(lián)立方程,可得交點(diǎn)坐標(biāo),利用橢圓的參數(shù)方程,求橢圓上一點(diǎn)到一條直線的距離的最大值,直接利用點(diǎn)到直線的距離公式,表示出橢圓上的點(diǎn)到直線的距離,利用三角有界性確認(rèn)最值,進(jìn)而求得參數(shù)的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017遼寧莊河市四模如圖,四棱錐,底面是矩形,平面 平面,是邊長(zhǎng)為的等邊三角形, ,點(diǎn)的中點(diǎn).

(1)求證: 平面

(2)點(diǎn) ,且滿足 ,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某苗圃基地為了解基地內(nèi)甲、乙兩塊地種植的同一種樹苗的長(zhǎng)勢(shì)情況,從兩塊地各隨機(jī)抽取了10株樹苗,分別測(cè)出它們的高度如下(單位:cm)
甲:19 20 21 23 25 29 32 33 37 41
乙:10 24 26 30 34 37 44 46 47 48
(1)用莖葉圖表示上述兩組數(shù)據(jù),并對(duì)兩塊地抽取樹苗的高度進(jìn)行比較,寫出一個(gè)統(tǒng)計(jì)結(jié)論;
(2)苗圃基地分配這20株樹苗的栽種任務(wù),小王在苗高大于40cm的5株樹苗中隨機(jī)的選種2株,則小王沒有選到甲苗圃樹苗的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c= ,cosA=﹣
(1)求sinC和b的值;
(2)求cos(2A+ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn為等比數(shù)列的前n項(xiàng)和,已知S2=2,S3=-6.

(1)求的通項(xiàng)公式;

(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2﹣bx+c≥0的解集為{x|1≤x≤2},則cx2+bx+a≤0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(4,3), =(2,﹣1),O為坐標(biāo)原點(diǎn),P是直線AB上一點(diǎn).
(1)若點(diǎn)P是線段AB的中點(diǎn),求向量 與向量 夾角θ的余弦值;
(2)若點(diǎn)P在線段AB的延長(zhǎng)線上,且| |= | |,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 為線段的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)若直線與平面所成角的正弦值為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級(jí)學(xué)生會(huì)有理科生4名,其中3名男同學(xué);文科生3名,其中有1名男同學(xué).從這7名成員中隨機(jī)抽4人參加高中示范校驗(yàn)收活動(dòng)問卷調(diào)查.

(Ⅰ)設(shè)為事件“選出的4人中既有文科生又有理科生”,求事件的概率;

(Ⅱ)設(shè)為選出的4人中男生人數(shù)與女生人數(shù)差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案