【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的已套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( 。

A. 20181月至4月的倉儲指數(shù)比2017年同期波動性更大

B. 這兩年的最大倉儲指數(shù)都出現(xiàn)在4月份

C. 2018年全年倉儲指數(shù)平均值明顯低于2017

D. 2018年各倉儲指數(shù)的中位數(shù)與2017年各倉儲指數(shù)中位數(shù)差異明顯

【答案】D

【解析】

根據(jù)折線圖逐一驗證各選項.

通過圖象可看出,20181月至4月的倉儲指數(shù)比2017年同期波動性更大, 這兩年的最大倉儲指數(shù)都出現(xiàn)在4月份, 2018年全年倉儲指數(shù)平均值明顯低于2017,所以選項A,B,C的結(jié)論都正確;2018年各倉儲指數(shù)的中位數(shù)與2017年各倉儲指數(shù)中位數(shù)基本在52%, ∴選項D的結(jié)論錯誤.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若的一條切線,求的值;

(3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體 ABCDEF中,四邊形ABCD是邊長為2的菱形,且平面ABCD⊥平面DCE.AF∥DE,且AF=DE=2,BF=2

(1)求證:AC⊥BE;

(2)若點F到平面DCE的距離為,求直線EC與平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cx22pyp0)的焦點到直線l2xy10的距離為

1)求拋物線的方程;

2)過點P0,t)(t0)的直線l與拋物線C交于AB兩點,交x軸于點Q,若拋物線C上總存在點M(異于原點O),使得∠PMQ=∠AMB90°,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次函數(shù)fx)=ax22bx+8

1)設(shè)集合P{1,23}Q{2,3,45},分別從集合PQ中隨機取一個數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點且為減函數(shù)的概率?

2)設(shè)集合P[13]Q[2,5],分別從集合PQ中隨機取一個實數(shù)作為ab,求函數(shù)yfx)在區(qū)間(﹣,2]上有零點且為減函數(shù)的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)氣象局統(tǒng)計,某市2019年從11日至130日這30天里有26天出現(xiàn)霧霾天氣.國際上通常用環(huán)境空氣質(zhì)量指數(shù)(AQI)來描述污染狀況,下表是某氣象觀測點記錄的連續(xù)4天里,該市AQI指數(shù)與當(dāng)天的空氣水平可見度的情況.

AQI指數(shù)

900

700

300

100

空氣水平可見度

0.5

3.5

6.5

9.5

1)設(shè),根據(jù)表中的數(shù)據(jù),求出關(guān)于的回歸方程;

2)若某天該市AQT指數(shù),那么當(dāng)天空氣水平可見度大約為多少?

附:參考數(shù)據(jù):,.

參考公式:線性回歸力程中,,其中為樣本平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為1+cos2θ=8sinθ

1)求曲線C的普通方程;

2)直線l的參數(shù)方程為,t為參數(shù)直線y軸交于點F與曲線C的交點為A,B,當(dāng)|FA||FB|取最小值時,求直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩種棉花中各抽測了25根棉花的纖維長度(單位: ) 組成一個樣本,且將纖維長度超過315的棉花定為一級棉花.設(shè)計了如下莖葉圖:

(1)根據(jù)以上莖葉圖,對甲、乙兩種棉花的纖維長度作比較,寫出兩個統(tǒng)計結(jié)論(不必計算);

(2)從樣本中隨機抽取甲、乙兩種棉花各2根,求其中恰有3根一級棉花的概率;

(3)用樣本估計總體,將樣本頻率視為概率,現(xiàn)從甲、乙兩種棉花中各隨機抽取1根,求其中一級棉花根數(shù)X的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.下圖所示的陽馬中,側(cè)棱底面ABCD,且,則當(dāng)點E在下列四個位置:PA中點、PB中點、PC中點、PD中點時分別形成的四面體中,鱉臑有( )個.

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案