【題目】企業(yè)需為員工繳納社會(huì)保險(xiǎn),繳費(fèi)標(biāo)準(zhǔn)是根據(jù)職工本人上一年度月平均工資(單位:元)的繳納,

年份

2014

2015

2016

2017

2018

t

1

2

3

4

5

y

270

330

390

460

550

某企業(yè)員工甲在2014年至2018年各年中每月所撒納的養(yǎng)老保險(xiǎn)數(shù)額y(單位:元)與年份序號(hào)t的統(tǒng)計(jì)如下表:

1)求出t關(guān)于t的線性回歸方程;

2)試預(yù)測2019年該員工的月平均工資為多少元?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

(注:,,其中

【答案】1;(27200元.

【解析】

1)分別求出相關(guān)系數(shù),求出回歸方程即可;(2)求出t的值,代入回歸方程求出y的預(yù)報(bào)值,求出平均工資即可.

1,,

,

,

;

2)由題意,因?yàn)?/span>2019年該員工的月平均工資決定2020年企業(yè)需為該員工繳納社會(huì)保險(xiǎn),故取,

,

2019年度月平均工資是(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),不等式恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知無窮數(shù)列的前n項(xiàng)和為,記 ,…, 中奇數(shù)的個(gè)數(shù)為

(Ⅰ)若= n,請(qǐng)寫出數(shù)列的前5項(xiàng);

(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;

(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是  

A. 棱柱的側(cè)面都是平行四邊形

B. 所有面都是三角形的多面體一定是三棱錐

C. 用一個(gè)平面去截正方體,截面圖形可能是五邊形

D. 將直角三角形繞其直角邊所在直線旋轉(zhuǎn)一周所得的幾何體是圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E是正方形ABCD邊AD的中點(diǎn),現(xiàn)將△ABE沿BE所在直線翻折成到△A'BE,使A’C=BC,并連接A'C,A'D.

(1)求證:DE∥平面A'BC;

(2)求證:A'E⊥平面A'BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入12月以來,某地區(qū)為了防止出現(xiàn)重污染天氣,堅(jiān)持保民生、保藍(lán)天,嚴(yán)格落實(shí)機(jī)動(dòng)車限行等一系列“管控令”.該地區(qū)交通管理部門為了了解市民對(duì)“單雙號(hào)限行”的贊同情況,隨機(jī)采訪了220名市民,將他們的意見和是否擁有私家車情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計(jì)

沒有私家車

90

20

110

有私家車

70

40

110

合計(jì)

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“是否贊同限行與是否擁有私家車”有關(guān);

(2)為了了解限行之后是否對(duì)交通擁堵、環(huán)境污染起到改善作用,從上述調(diào)查的不贊同限行的人員中按分層抽樣抽取6人,再從這6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少抽到1名“沒有私家車”人員的概率.

附:.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若處取得極值,求的值;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的點(diǎn)與定點(diǎn)的距離與它到直線的距離的比是常數(shù),又斜率為的直線與曲線交于不同的兩點(diǎn)。

(Ⅰ)求曲線的方程;

(Ⅱ)若,求 的最大值;

(Ⅲ)設(shè),直線與曲線的另一個(gè)交點(diǎn)為,直線與曲線的另一個(gè)交點(diǎn)為.和點(diǎn) 共線,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,FBE的中點(diǎn),

求證:(1平面ABC

2平面EDB.

3)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案