【題目】某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設,,(單位:百米).
(1)分別求,關于x的函數(shù)關系式;
(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.
【答案】(1),.,.
(2)當百米時,兩條直道的長度之和取得最小值百米.
【解析】
(1)由,可解得.方法一:再在中,利用余弦定理,可得關于x的函數(shù)關系式;在和中,利用余弦定理,可得關于x的函數(shù)關系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.
解:(1),是邊長為3的等邊三角形,又,
,.
由,得.
法1:在中,由余弦定理,得
.
故直道長度關于x的函數(shù)關系式為,.
在和中,由余弦定理,得
①
②
因為M為的中點,所以.
由①②,得,
所以,所以.
所以,直道長度關于x的函數(shù)關系式為
,.
法2:因為在中,,
所以.
所以,直道長度關于x的函數(shù)關系式為,.
在中,因為M為的中點,所以.
所以.
所以,直道長度關于x的函數(shù)關系式為,.
(2)由(1)得,兩條直道的長度之和為
(當且僅當即時取“”).
故當百米時,兩條直道的長度之和取得最小值百米.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,離心率為,直線恒過的一個焦點.
(1)求的標準方程;
(2)設為坐標原點,四邊形的頂點均在上,交于,且,若直線的傾斜角的余弦值為,求直線與軸交點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的圖象經(jīng)過點.
(1)求拋物線的方程和焦點坐標;
(2)直線交拋物線于,不同兩點,且,位于軸兩側(cè),過點,分別作拋物線的兩條切線交于點,直線,與軸的交點分別記作,.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)絡商城在年月日開展“慶元旦”活動,當天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進行紅包獎勵.如圖是抽取的家店鋪元旦當天的銷售額(單位:千元)的頻率分布直方圖.
(1)求抽取的這家店鋪,元旦當天銷售額的平均值;
(2)估計抽取的家店鋪中元旦當天銷售額不低于元的有多少家;
(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進行銷售研究,求抽取的店鋪銷售額在和各一個的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強戰(zhàn)勝疫情的信心. 為了檢驗大家對新冠狀病毒及防控知識的了解程度,該市推出了相關的知識問卷,隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關知識了解全面,“中老年人”中對防控的相關知識了解全面和不夠全面的人數(shù)之比是2:1.
(1)求圖中的值;
(2)現(xiàn)采取分層抽樣在和中隨機抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計結果判斷:能夠有99.9%的把握認為“中老年人”比“青少年人”更加了解防控的相關知識?
了解全面 | 了解不全面 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在多面體ABCDPE中,四邊形ABCD是直角梯形,,,平面平面,,,,,的余弦值為,,F為BE中點,G為PD中點.
(1)求證:平面ABCD;
(2)求平面BCE與平面ADE所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓M過點且與直線相切.
(1)求動圓圓心M的軌跡C的方程;
(2)斜率為的直線l經(jīng)過點且與曲線C交于A,B兩點,線段AB的中垂線交x軸于點N,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.
(1)求橢圓E的標準方程,
(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最小正周期為4,其圖象關于直線對稱,給出下面四個結論:
①函數(shù)在區(qū)間上先增后減;②將函數(shù)的圖象向右平移個單位后得到的圖象關于原點對稱;③點是函數(shù)圖象的一個對稱中心;④函數(shù)在上的最大值為1.其中正確的是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com