函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201282961563.png)
.
(1)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128327388.png)
時,對任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128327376.png)
R,存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128359397.png)
R,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128359714.png)
,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128374299.png)
的取值范圍;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128405846.png)
對任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128405391.png)
恒成立,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128421283.png)
的取值范圍.
試題分析:(1)本問題等價于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128499728.png)
, 1分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128515711.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128530456.png)
, 2分
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128546447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128561554.png)
上遞減,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128561621.png)
上遞增, 3分
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128593970.png)
4分
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128593683.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128608608.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128374299.png)
的取值范圍是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128452714.png)
; 5分
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128655487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128671702.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128686501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128686823.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128702512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128717815.png)
, 6分
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128733481.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128749566.png)
遞增,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128764800.png)
, 7分
①當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128780490.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128795415.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128795473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128749566.png)
遞增,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201288271066.png)
,
9分
②當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128842480.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128858415.png)
時,存在正數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128858324.png)
,滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128873769.png)
,
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128795473.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128905554.png)
遞減,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128920608.png)
遞增, 10分
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128936693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201289511628.png)
,11分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240201289831203.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128983462.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128749566.png)
遞減, 12分
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129014569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129029782.png)
,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129092508.png)
, 13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129092299.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129107847.png)
,因為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129123484.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129139429.png)
上遞增,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020129154654.png)
, 14分
由①②知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128421283.png)
的取值范圍是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020128468653.png)
. 15分
點評:難題,利用導數(shù)研究函數(shù)的單調(diào)性、極值,是導數(shù)應用的基本問題,主要依據(jù)“在給定區(qū)間,導函數(shù)值非負,函數(shù)為增函數(shù);導函數(shù)值非正,函數(shù)為減函數(shù)”。確定函數(shù)的極值,遵循“求導數(shù),求駐點,研究單調(diào)性,求極值”。不等式恒成立問題,往往通過構造函數(shù),研究函數(shù)的最值,使問題得到解決。本題對a-2的取值情況進行討論,易于出錯。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225206818.png)
.
(Ⅰ)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225222415.png)
時,討論函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225237561.png)
在[
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225237565.png)
上的單調(diào)性;
(Ⅱ)如果
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225253290.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225268312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225284490.png)
是函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225300448.png)
的兩個零點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225315481.png)
為函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225300448.png)
的導數(shù),證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022225362860.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905268518.png)
.
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905283447.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905299323.png)
處的切線垂直于直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905315664.png)
,求該點的切線方程,并求此時函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905283447.png)
的單調(diào)區(qū)間;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905346766.png)
對任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905361500.png)
恒成立,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020905377283.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240157077451092.png)
.
(Ⅰ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015707776393.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015707791540.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015707807323.png)
的最小值;
(Ⅱ)設數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015707823456.png)
的通項
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015707823845.png)
,證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015707854877.png)
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240214506841312.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021450699403.png)
,0)內(nèi)單調(diào)遞增,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824021450715277.png)
取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240158385061430.png)
(Ⅰ)當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015838506535.png)
時,判斷函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015838521447.png)
是否有極值;
(Ⅱ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015838537724.png)
時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015838521447.png)
總是區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015838584557.png)
上的增函數(shù),求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015838599283.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)y=f(x)(x∈(0,2))的圖象是如圖所示的圓C的一段圓。F(xiàn)給出如下命題:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240152335122278.png)
①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015233527496.png)
;②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015233543554.png)
;③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015233558459.png)
為減函數(shù);④若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015233574690.png)
,則a+b=2.
其中所有正確命題的序號為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014148872969.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014148903980.png)
(其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014148919431.png)
).
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014148950447.png)
的單調(diào)區(qū)間;
(2)若函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014148965442.png)
在區(qū)間
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014148981521.png)
上為增函數(shù),求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149012283.png)
的取值范圍;
(3)設函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149043786.png)
,當
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149059337.png)
時,若存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149090554.png)
,對任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149106549.png)
,總有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149137727.png)
成立,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014149153337.png)
的取值范圍.
查看答案和解析>>