【題目】某小學(xué)為了解四年級(jí)學(xué)生的家庭作業(yè)用時(shí)情況,從本校四年級(jí)隨機(jī)抽取了一批學(xué)生進(jìn)行調(diào)查,并繪制了學(xué)生作業(yè)用時(shí)的頻率分布直方圖,如圖所示.

(1)估算這批學(xué)生的作業(yè)平均用時(shí)情況;

(2)作業(yè)用時(shí)不能完全反映學(xué)生學(xué)業(yè)負(fù)擔(dān)情況,這與學(xué)生自身的學(xué)習(xí)習(xí)慣有很大關(guān)系如果用時(shí)四十分鐘之內(nèi)評(píng)價(jià)為優(yōu)異,一個(gè)小時(shí)以上為一般,其它評(píng)價(jià)為良好.現(xiàn)從優(yōu)異和良好的學(xué)生里面用分層抽樣的方法抽取300人,其中女生有90人(優(yōu)異20人).請(qǐng)完成列聯(lián)表,并根據(jù)列聯(lián)表分析能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為學(xué)習(xí)習(xí)慣與性別有關(guān)系?

男生

女生

合計(jì)

良好

優(yōu)異

合計(jì)

附:,其中

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

【答案】(1)57分鐘(2)不能

【解析】

1)由頻率分布直方圖可得這批學(xué)生的作業(yè)平均用時(shí)情況

2)優(yōu)異學(xué)生數(shù)與良好學(xué)生數(shù)之比為0.01:(0.02+0.03)=15,按照分層抽樣得300人中優(yōu)異50,人,良好250人,女生90人,男生210人,女生優(yōu)異20,良好70,男生優(yōu)異30,良好180人,由此可得列聯(lián)表,根據(jù)列聯(lián)表計(jì)算K2,結(jié)合臨界值表可得.

解:(1)

這批學(xué)生的作業(yè)平均用時(shí)為57分鐘.

(2)優(yōu)異學(xué)生數(shù)與良好學(xué)生數(shù)之比為,

按照分層抽樣得300人中優(yōu)異50,人,良好250人,女生90人,男生210人,女生優(yōu)異20,良好70,男生優(yōu)異30,良好180人,

列聯(lián)表如下:

男生

女生

合計(jì)

良好

180

70

250

優(yōu)異

30

20

50

合計(jì)

210

90

300

,

故不能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為學(xué)習(xí)習(xí)慣與性別有關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小威初三參加某高中學(xué)校的數(shù)學(xué)自主招生考試,這次考試由十道選擇題組成.得分要求是:做對(duì)一道題得分,做錯(cuò)一道題扣去分,不做得分,總得分分就算及格.小威的目標(biāo)是至少得分獲得及格.在這次考試中,小威確定他做的前六題全對(duì),記分;而他做余下的四道題中每道題做對(duì)的概率均為.考試中,小威思量:從余下的四道題中再做一道并且及格的概率;從余下的四道題中恰做兩道并且及格的概率.他發(fā)現(xiàn),只做一道更容易及格.

1)求:小威從余下的四道題中恰做三道并且及格的概率,從余下的四道題中全做并且及格的概率,求;

2)由于的大小影響,請(qǐng)你幫小威討論:小威從余下的四道題中恰做幾道并且及格的概率最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新個(gè)稅法于2019年1月1日進(jìn)行實(shí)施.為了調(diào)查國(guó)企員工對(duì)新個(gè)稅法的滿意程度,研究人員在地各個(gè)國(guó)企中隨機(jī)抽取了1000名員工進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.

(Ⅰ)估計(jì)被調(diào)查的員工的滿意程度的中位數(shù);(計(jì)算結(jié)果保留兩位小數(shù))

(Ⅱ)若按照分層抽樣從,中隨機(jī)抽取8人,再?gòu)倪@8人中隨機(jī)抽取4人,記分?jǐn)?shù)在的人數(shù)為,求的分布列與數(shù)學(xué)期望;

(Ⅲ)以頻率估計(jì)概率,若該研究人員從全國(guó)國(guó)企員工中隨機(jī)抽取人作調(diào)查,記成績(jī)?cè)?/span>,的人數(shù)為,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,如果都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是_____________(寫出所有正確命題的編號(hào))

①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)

②如果都是無(wú)理數(shù),則直線不經(jīng)過(guò)任何整點(diǎn)

③直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過(guò)兩個(gè)不同的整點(diǎn)

④直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:都是有理數(shù)

⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是雙曲線的左、右焦點(diǎn),A為左頂點(diǎn),P為雙曲線右支上一點(diǎn),若的最小內(nèi)角為,則(

A.雙曲線的離心率B.雙曲線的漸近線方程為

C.D.直線與雙曲線有兩個(gè)公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,己知點(diǎn),,分別為線段,上的動(dòng)點(diǎn),滿足.

1)若點(diǎn)恰好與點(diǎn)重合,求半徑為且與直線相切于點(diǎn)的圓的方程;

2)設(shè),求證:的外接圓恒過(guò)定點(diǎn)(異于原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,,,是曲線上的點(diǎn),,,軸正半軸上的點(diǎn),且,,均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

1)寫出之間的等量關(guān)系,以及、之間的等量關(guān)系;

2)猜測(cè)并證明數(shù)列的通項(xiàng)公式;

3)設(shè),集合,若,求實(shí)常數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù)滿足.且當(dāng)時(shí),.若對(duì)于任意,都有,則實(shí)數(shù)的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)在此拋物線上,,不過(guò)原點(diǎn)的直線與拋物線C交于A,B兩點(diǎn),以AB為直徑的圓M過(guò)坐標(biāo)原點(diǎn).

(1)求拋物線C的方程;

(2)證明:直線恒過(guò)定點(diǎn);

(3)若線段AB中點(diǎn)的縱坐標(biāo)為2,求此時(shí)直線和圓M的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案