【題目】某校為了解學(xué)生對消防安全知識的掌握情況,開展了網(wǎng)上消防安全知識有獎競賽活動,并對參加活動的男生、女生各隨機(jī)抽取20人,統(tǒng)計答題成績,分別制成如下頻率分布直方圖和莖葉圖:

1)把成績在80分以上(含80分)的同學(xué)稱為“安全通”.根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有95%的把握認(rèn)為是否是“安全通”與性別有關(guān)

男生

女生

合計

安全通

非安全通

合計

2)以樣本的頻率估計總體的概率,現(xiàn)從該校隨機(jī)抽取22女,設(shè)其中“安全通”的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:參考公式,其中.

參考數(shù)據(jù):

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)填表見解析;沒有95%的把握認(rèn)為“安全通”與性別有關(guān)(2)詳見解析

【解析】

1)根據(jù)題目所給數(shù)據(jù),計算并填寫好列聯(lián)表.計算出的值,由此判斷沒有95%的把握認(rèn)為“安全通”與性別有關(guān).

2)根據(jù)相互獨立事件概率乘法公式,結(jié)合男生、女生中安全通的人數(shù),計算出分布列,進(jìn)而求得數(shù)學(xué)期望.

1)由題知,女生樣本數(shù)據(jù)中“安全通”為6人,非“安全通”為14人,男生樣本中“安全通”人數(shù)為人,非“安全通”的人數(shù)為8人,列出列聯(lián)表如下:

男生

女生

合計

安全通

12

6

18

非安全通

8

14

22

合計

20

20

40

假設(shè):“安全通”與性別無關(guān),

所以的觀測值為,

所以沒有95%的把握認(rèn)為“安全通”與性別有關(guān).

2)由題知,隨機(jī)選1女生為“安全通”的概率為0.3,選1男生為“安全通”的概率為0.6的可能取值為0,123,4,

,

,

,

,

,

所以的分布列為

0

1

2

3

4

0.0784

0.3024

0.3924

0.1944

0.0324

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中).

(1)當(dāng)時,求函數(shù)的圖像在處的切線方程;

(2)若恒成立,求的取值范圍;

(3)設(shè),且函數(shù)有極大值點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點O為極點,以x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;

2)已知定點,直線與曲線C分別交于PQ兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知曲線C1x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線ρ(2cosθ-sinθ)=6.

)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的、2倍后得到曲線C2,試寫出直線的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以昆明、玉溪為中心的滇中地區(qū),冬無嚴(yán)寒、夏無酷暑,世界上主要的鮮切花品種在這里都能實現(xiàn)周年規(guī);a(chǎn).某鮮花批發(fā)店每天早晨以每支2元的價格從鮮切花生產(chǎn)基地購入某種玫瑰,經(jīng)過保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價格整箱出售.由于鮮花的保鮮特點,制定了如下促銷策略:若每天下午3點以前所購進(jìn)的玫瑰沒有售完,則對未售出的玫瑰以每箱1200元的價格降價處理.根據(jù)經(jīng)驗,降價后能夠把剩余玫瑰全部處理完畢,且當(dāng)天不再購進(jìn)該種玫瑰,由于庫房限制每天最多加工6.

1)若某天該鮮花批發(fā)店購入并加工了6箱該種玫瑰,在下午3點以前售出4箱,且被6位不同的顧客購買.現(xiàn)從這6位顧客中隨機(jī)選取2人贈送優(yōu)惠卡,則恰好一位是以2000元價格購買的顧客,另一位是以1200元價格購買的顧客的概率是多少?

2)該鮮花批發(fā)店統(tǒng)計了100天內(nèi)該種玫瑰在每天下午3點以前的銷售量(單位:箱),統(tǒng)計結(jié)果如下表所示(視頻率為概率):

/

4

5

6

頻數(shù)

30

①估計接下來的一個月(30天)內(nèi)該種玫瑰每天下午3點以前的銷售量不少于5箱的天數(shù)是多少?

②若批發(fā)店每天在購進(jìn)5箱數(shù)量的玫瑰時所獲得的平均利潤最大(不考慮其他成本),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時,求不等式fx)≥1的解集;

(Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,離心率,過橢圓右焦點的直線與橢圓交于兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說明理由;

(Ⅲ)設(shè)點是一個動點,若直線的斜率存在,且中點,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,過點于點,以為折痕把折起,當(dāng)幾何體的的體積最大時,則下列命題中正確的個數(shù)是( )

∥平面

與平面所成的角等于與平面所成的角

所成的角等于所成的角

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為,直線,過點且與拋物線分別交于點和點,弦的中點分別為,若,則下列結(jié)論正確的是

______________

的最小值為32

②以四點為頂點的四邊形的面積的最小值為128

③直線過定點

④焦點可以同時為弦的三等分點

查看答案和解析>>

同步練習(xí)冊答案