【題目】如圖,已知四棱錐的底面是邊長為的菱形,,點E是棱BC的中點,,點P在平面ABCD的射影為O,F(xiàn)為棱PA上一點.

1求證:平面平面BCF;

2平面PDE,,求四棱錐的體積.

【答案】(1)見解析;(2)

【解析】

1)推導(dǎo)出BCPOBCDE,從而BC⊥平面PED,由此能證明平面PED⊥平面BCF;

2)取AD的中點G,連結(jié)BG,FG,從而BGDE,進而BG∥平面PDE,平面BGF∥平面PDE,由此能求出四棱錐FABED的體積.

證明:平面ABCD平面ABCD,,

依題意是等邊三角形,E為棱BC的中點,,

,PO,平面PED,平面PED,

平面BCF,平面平面BCF

解:AD的中點G,連結(jié)BGFG,

底面ABCD是菱形,E是棱BC的中點,

平面PDE,平面PDE,平面PDE,

平面PDE,平面平面PDE,

又平面平面,平面平面,

PA的中點,

,

F到平面ABED的距離為

四棱錐的體積:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,MAD的中點,動點N在正方形ABCD的內(nèi)部或其邊界移動,并且滿足,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在區(qū)間上是增函數(shù).

(1)求實數(shù)的值組成的集合;

(2)設(shè)關(guān)于的方程的兩個非零實根為試問:是否存在實數(shù),使得不等式對任意 恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分),分為6組:,,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識競賽活動的學(xué)生中隨機抽取一名學(xué)生,該學(xué)生的比賽成績不低于80,估計的概率;

3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為優(yōu)秀”’,比賽成績低于80分為非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有99.9%的把握認(rèn)為比賽成績是否優(yōu)秀與性別有關(guān)”?

優(yōu)秀

非優(yōu)秀

合計

男生

40

女生

50

合計

100

參考公式及數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行的“三色球”購物摸獎活動規(guī)定:在一次摸獎中,摸獎?wù)呦葟难b有3個紅球與4個白球的袋中任意摸出3個球,再從裝有1個藍球與2個白球的袋中任意摸出1個球,根據(jù)摸出4個球中紅球與藍球的個數(shù),設(shè)一、二、三等獎如下:

獎級

摸出紅、藍球個數(shù)

獲獎金額

一等獎

31

200

二等獎

30

50

三等獎

21

10

其余情況無獎且每次摸獎最多只能獲得一個獎級.

1)求摸獎?wù)叩谝淮蚊驎r恰好摸到1個紅球的概率;

2)求摸獎?wù)咴谝淮蚊勚蝎@獎金額的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是自然對數(shù)的底數(shù),.

1)求的最值;

2)討論方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位、百位、萬位數(shù)用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為坐標(biāo)原點,直線經(jīng)過拋物線的焦點.

1)若點到直線的距離為, 求直線的方程;

2)設(shè)點是直線與拋物線在第一象限的交點.是以點為圓心,為半徑的圓與軸負(fù)半軸的交點.試判斷直線與拋物線的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)檔有多部優(yōu)秀電影上映,其中《流浪地球》是比較火的一部.某影評網(wǎng)站統(tǒng)計了100名觀眾對《流浪地球》的評分情況,得到如下表格:

評價等級

★★

★★★

★★★★

★★★★★

分?jǐn)?shù)

020

2140

4160

6180

81100

人數(shù)

5

2

12

6

75

(1)根據(jù)以上評分情況,試估計觀眾對《流浪地球》的評價在四星以上(包括四星)的頻率;

(2)以表中各評價等級對應(yīng)的頻率作為各評價等級對應(yīng)的概率,假設(shè)每個觀眾的評分結(jié)果相互獨立.

(i)若從全國所有觀眾中隨機選取3名,求恰有2名評價為五星1名評價為一星的概率;

(ii)若從全國所有觀眾中隨機選取16名,記評價為五星的人數(shù)為X,求X的方差.

查看答案和解析>>

同步練習(xí)冊答案