(2012•梅州二模)設(shè)G是一個(gè)至少含有兩個(gè)數(shù)的數(shù)集,若對(duì)任意a,b∈G,都有a+b,a-b,ab,
a
b
∈G
(除數(shù)b≠0),則稱(chēng)G是一個(gè)數(shù)域,例如有理數(shù)集Q是數(shù)域.有下列命題:①數(shù)域必含有0,1兩個(gè)數(shù);②整數(shù)集是數(shù)域;③若有理數(shù)集Q⊆M,則數(shù)集M必為數(shù)域;④數(shù)域必為無(wú)限集.其中正確命題的個(gè)數(shù)是( 。
分析:利用已知條件中數(shù)域的定義判斷各命題的真假,題目給出了對(duì)兩個(gè)實(shí)數(shù)的四種運(yùn)算,要滿(mǎn)足對(duì)四種運(yùn)算的封閉,只有一一驗(yàn)證.
解答:解:因所給數(shù)域中的兩數(shù)a、b完全可以相等,此時(shí)a-b=0,
a
b
=1
,所以①正確;
對(duì)于②,取a=1,b=2,則
a
b
=
1
2
∉G
,所以②不正確;
對(duì)于③,數(shù)集M中多加一個(gè)復(fù)數(shù)i,則1-i∉M,所以③不正確;
因數(shù)域中的數(shù)可以連續(xù)進(jìn)行四種運(yùn)算,所以數(shù)域必為無(wú)限集,所以④正確.
故選B.
點(diǎn)評(píng):本題考查學(xué)生對(duì)新定義題型的理解和把握能力,理解數(shù)域的定義是解決該題的關(guān)鍵,題目著重考查學(xué)生的構(gòu)造性思維,一定要讀懂題目再入手,沒(méi)有一個(gè)條件是多余的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)設(shè)b,c表示兩條直線(xiàn),α,β表示兩個(gè)平面,則下列為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)定義在R上的函數(shù)f(x)滿(mǎn)足:f(x+y)=f(x)f(y),且當(dāng)x>0時(shí),f(x)>1.
(1)求f(0)的值,并證明f(x)是定義域上的增函數(shù):
(2)數(shù)列{an}滿(mǎn)足a1=a≠0,f(an+1)=f(aan)f(a-1)(n=1,2,3,…),求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某社區(qū)居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如圖).
(1)為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,求月收入在[1500,2000)(元)段應(yīng)抽出的人數(shù);
(2)為了估計(jì)該社區(qū)3個(gè)居民中恰有2個(gè)月收入在[2000,3000)(元)的概率,采用隨機(jī)模擬的方法:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),我們用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的數(shù)字表示月收入不在[2000,3000)(元)的居民;再以每三個(gè)隨機(jī)數(shù)為一組,代表統(tǒng)計(jì)的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù)如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
據(jù)此估計(jì),計(jì)算該社區(qū)3個(gè)居民中恰好有2個(gè)月收入在[2000,3000)(元)的概率.
(3)任意抽取該社區(qū)6個(gè)居民,用ξ表示月收入在(2000,3000)(元)的人數(shù),求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)設(shè)a,b∈R,若復(fù)數(shù)z=
1+2i
1+i
,則z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)以雙曲線(xiàn)
x2
3
-
y2=1的左焦點(diǎn)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線(xiàn)方程是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案