已知函數(shù)其中為自然對數(shù)的底數(shù), .
(1)設(shè),求函數(shù)的最值;
(2)若對于任意的,都有成立,求的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,.
(1)求函數(shù)的極值點(diǎn);
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,,且直線與曲線相切.
(1)若對內(nèi)的一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)(ⅰ)當(dāng)時(shí),求最大的正整數(shù),使得任意個(gè)實(shí)數(shù)(是自然對數(shù)的底數(shù))都有成立;
(ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為自然對數(shù)的底數(shù)),(為常數(shù)),是實(shí)數(shù)集上的奇函數(shù).
(1)求證:;
(2)討論關(guān)于的方程:的根的個(gè)數(shù);
(3)設(shè),證明:(為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)R,,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù),若的最小值與無關(guān),求的取值范圍;
(3)若,直接寫出(不需給出演算步驟)關(guān)于的方程的解集
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中.
(I)若函數(shù)圖象恒過定點(diǎn)P,且點(diǎn)P關(guān)于直線的對稱點(diǎn)在的圖象上,求m的值;
(Ⅱ)當(dāng)時(shí),設(shè),討論的單調(diào)性;
(Ⅲ)在(I)的條件下,設(shè),曲線上是否存在兩點(diǎn)P、Q,使△OPQ(O為原點(diǎn))是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊的中點(diǎn)在y軸上?如果存在,求a的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且.
(1)判斷的奇偶性并說明理由;
(2)判斷在區(qū)間上的單調(diào)性,并證明你的結(jié)論;
(3)若對任意實(shí)數(shù),有成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中且.
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對稱中心坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com