【題目】如圖所示,在直三棱柱中,,平面,DAC的中點.

1)求證:平面;

2)求證:平面;

3)設E上一點,試確定E的位置使平面平面BDE,并說明理由.

【答案】1)證明見詳解,(2)證明見詳解,(3)當的中點時,平面平面BDE,證明見詳解

【解析】

1)連接相交于,可得,結合線面平行的判定定理即可證明平面

2)先證明即可得出平面,然后可得,又,即可證明平面

3)當的中點時,平面平面BDE,由已知易得,結合平面可得平面,進而根據(jù)面面垂直的判定定理得到結論.

1)如圖,連接相交于,則的中點

連接,又的中點

所以,又平面平面

所以平面

2)因為,所以四邊形為正方形

所以

又因為平面,平面

所以

所以平面,所以

又在直三棱柱中,

所以平面

3)當的中點時,平面平面BDE

因為分別是的中點

所以,因為平面

所以平面,又平面

所以平面平面BDE

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),不等式恒成立.

(1)求函數(shù)的極值和函數(shù)的圖象在點處的切線方程;

(2)求實數(shù)的取值的集合

(3)設,函數(shù),,其中為自然對數(shù)的底數(shù),若關于的不等式至少有一個解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知多面體ABCA1B1C1A1A,B1B,C1C均垂直于平面ABC,ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

Ⅰ)證明:AB1⊥平面A1B1C1;

求直線AC1與平面ABB1所成的角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù) 的最大值;

(2) ,且 ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將集合中的元素作全排列,使得除了最左端的一個數(shù)之外,對于其余的每個數(shù),在的左邊某個位置上總有一個數(shù)與之差的絕對值為1.則滿足條件的排列個數(shù)為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對于任意x∈R都有fx)+2f(-x)=3cosx-sinx,則函數(shù)f(2x圖象的對稱中心為( )

A. (kπ-,0)(k∈Z) B. ,0)(k∈Z)

C. (kπ-,0)(k∈Z) D. ,0)(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,則方程恰有2個不同的實根,實數(shù)取值范圍__________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】光伏發(fā)電是利用太陽能電池及相關設備將太陽光能直接轉化為電能,近幾年在國內(nèi)出臺的光伏發(fā)電補貼政策的引導下,某地光伏發(fā)電裝機量急劇上漲,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

7

8

新增光伏裝機量兆瓦

0.4

0.8

1.6

3.1

6.1

7.1

9.7

12.2

某位同學分別用兩種模型:①,進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差等于

經(jīng)過計算得,,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由.

2)根據(jù)(1)的判斷結果及表中數(shù)據(jù)建立關于的回歸方程,并預測該地區(qū)2020年新增光伏裝機量是多少.(在計算回歸系數(shù)時精確到0.01

附:歸直線的斜率和截距的最小二乘估計公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某一電視臺對年齡高于40歲和不高于40歲的人是否喜歡西班牙隊進行調(diào)查,40歲以上調(diào)查了50人,不高于40歲調(diào)查了50人,所得數(shù)據(jù)制成如下列聯(lián)表:

不喜歡西班牙隊

喜歡西班牙隊

總計

40歲以上

50

不高于40

15

35

50

總計

100

已知工作人員從所有統(tǒng)計結果中任取一個,取到喜歡西班牙隊的人的概率為,則有超過________的把握認為年齡與西班牙隊的被喜歡程度有關.

參考公式與臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.702

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案