【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
【答案】(1);(2).
【解析】
(1)設,由已知,求得的坐標為,代入橢圓方程,得;再由,求得,結合,求出值,即可求得結論;
(2)先討論直線斜率不存在和斜率為0的情況,驗證不滿足條件,設直線的方程為,與橢圓方程聯(lián)立,消元,由韋達定理和相交弦長公式,求出;
再將直線方程與橢圓聯(lián)立,求出,由求出的值,進而求出,再求出點到直線的距離,即可求解.
(1)設橢圓的焦距為,∵,
∴的坐標為.∵在上,
將代人,得.
又∵,∴,
∴.又∵,
∴,,的方程為.
(2)當直線的斜率不存在時,,,不符合題意;
當直線的斜率為0時,,,也不符合題意.
∴可設直線的方程為,
聯(lián)立得,
則,.
.
由得或
∴.
又∵,∴,∴,
∴.∵到直線的距離,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】某地要建造一個邊長為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開挖成一個池塘,如圖建立平面直角坐標系后,點的坐標為,曲線是函數(shù)圖像的一部分,過邊上一點在區(qū)域內作一次函數(shù)()的圖像,與線段交于點(點不與點重合),且線段與曲線有且只有一個公共點,四邊形為綠化風景區(qū).
(1)求證:;
(2)設點的橫坐標為,
①用表示、兩點的坐標;
②將四邊形的面積表示成關于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場對職工開展了安全知識競賽的活動,將競賽成績按照,,… ,分成組,得到下面頻率分布直方圖.根據(jù)頻率分布直方圖.下列說法正確的是( )
①根據(jù)頻率分布直方圖估計該商場的職工的安全知識競賽的成績的眾數(shù)估計值為;
②根據(jù)頻率分布直方圖估計該商場的職工的安全知識競賽的成績的中位數(shù)約為;
③若該商場有名職工,考試成績在分以下的被解雇,則解雇的職工有人;
④若該商場有名職工,商場規(guī)定只有安全知識競賽超過分(包括分)的人員才能成為安全科成員,則安全科成員有人.
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市實施二手房新政一年多以來,為了了解新政對居民的影響,房屋管理部門調查了2018年6月至2019年6月期間購買二手房情況,首先隨機抽取了其中的400名購房者,并對其購房面積(單位:平方米,)講行了一次統(tǒng)計,制成了如圖1所示的頻率分布直方圖,接著調查了該市2018年6月至2019年6月期間當月在售二手房的均價(單位:萬元/平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應2018年6月至2019年6月)
(1)試估計該市市民的平均購房面積(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)從該市2018年6月至2019年6月期間所有購買二手房的市民中任取3人,用頻率估計概率,記這3人購房面積不低于100平方米的人數(shù)為,求的分布列與數(shù)學期望;
(3)根據(jù)散點圖選擇和兩個模型講行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為和,并得到一些統(tǒng)計量的值,如表所示:
0.005459 | 0.005886 | |
0.006050 |
請利用相關系數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測2019年8月份的二手房購房均價(精確到0.001).
參考數(shù)據(jù):,,,,,
參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在正實數(shù),對于任意,都有,則稱函數(shù)在上是有界函數(shù),下列函數(shù):
①;②;③;④;
其中在上是有界函數(shù)的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校大一新生中,來自東部地區(qū)的學生有2400人、中部地區(qū)學生有1600人、西部地區(qū)學生有1000人.從中選取100人作樣本調研飲食習慣,為保證調研結果相對準確,下列判斷正確的有( )
①用分層抽樣的方法分別抽取東部地區(qū)學生48人、中部地區(qū)學生32人、西部地區(qū)學生20人;
②用簡單隨機抽樣的方法從新生中選出100人;
③西部地區(qū)學生小劉被選中的概率為;
④中部地區(qū)學生小張被選中的概率為
A. ①④ B. ①③ C. ②④ D. ②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)試判斷函數(shù)在上的單調性,并說明理由;
(2)若是在區(qū)間上的單調函數(shù),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com