【題目】若復(fù)數(shù)(x﹣i)i=y+2i,x,y∈R,則復(fù)數(shù)x+yi=( )
A.﹣2+i
B.2+i
C.1﹣2i
D.1+2i
【答案】B
【解析】解:∵復(fù)數(shù)(x﹣i)i=y+2i, ∴xi+1=y+2i,
∴x=2,y=1,
∴復(fù)數(shù)x+yi=2+i
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用復(fù)數(shù)相等的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握如果兩個(gè)復(fù)數(shù)實(shí)部相等且虛部相等就說(shuō)這兩個(gè)復(fù)數(shù)相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=2ax+1﹣3(a>0,且a≠1)的圖象經(jīng)過(guò)的定點(diǎn)坐標(biāo)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】到定點(diǎn)(1,0,0)的距離不大于1的點(diǎn)集合為( )
A.{(x,y,z)|(x﹣1)2+y2+z2≤1}
B.{(x,y,z)|(x﹣1)2+y2+z2=1}
C.{(x,y,z)|(x﹣1)+y+z≤1}
D.{(x,y,z)|x2+y2+z2≤1}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若a<0,﹣1<b<0,則下列不等式關(guān)系成立的是( )
A.ab2<ab<a
B.a<ab<ab2
C.ab2<a<ab
D.a<ab2<ab
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為5,那么f(x)在區(qū)間[﹣7,﹣3]上是( )
A.增函數(shù)且最小值為﹣5
B.增函數(shù)且最大值為﹣5
C.減函數(shù)且最小值為﹣5
D.減函數(shù)且最大值為﹣5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)滿(mǎn)足對(duì)任意x∈R都有f(x+6)=f(x)成立,且f(1)=1,則f(2015)+f(2016)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的個(gè)數(shù)是( )
①若兩個(gè)平面α∥β,aα,bβ,則a∥b;
②若兩個(gè)平面α∥β,aα,bβ,則a與b異面;
③若兩個(gè)平面α∥β,aα,bβ,則a與b一定不相交;
④若兩個(gè)平面α∥β,aα,bβ,則a與b平行或異面.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=lnx+2x﹣6的零點(diǎn)所在的區(qū)間為( )
A.(1,2)
B.(2,3)
C.(3,4)
D.(4,5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“若a2+b2=0,則a、b全為0(a、b∈R)”,其反設(shè)正確的是( )
A.a、b至少有一個(gè)不為0
B.a、b至少有一個(gè)為0
C.a、b全不為0
D.a、b中只有一個(gè)為0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com