【題目】在區(qū)間上,若函數(shù)為增函數(shù),而函數(shù)為減函數(shù),則稱函數(shù)為區(qū)間上的弱增函數(shù).則下列函數(shù)中,在區(qū)間上不是弱增函數(shù)的為(

A. B. C. D.

【答案】C

【解析】

試題分析:A.在[1,2]上為增函數(shù);在[1,2]上為減函數(shù);

g(x)在[1,2]上為弱增函數(shù);

B. 在[1,2]上為增函數(shù);x增大時(shí),增大,減小,增大;減小;在[1,2]上為減函數(shù);

g(x)在[1,2]上為弱增函數(shù);

C.g(x)=x2+1在[1,2]上為增函數(shù);在[1,2]上為增函數(shù);g(x)在區(qū)間[1,2]上不是弱增函數(shù),即該選項(xiàng)正確;

D.在[1,2]上為增函數(shù);;x[1,2];y′≤0;在[1,2]上單調(diào)遞減;g(x)在[1,2]上為弱增函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率,長(zhǎng)軸長(zhǎng)為4.

(1)求橢圓的方程;

(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),過右焦點(diǎn)作直線與直線交與點(diǎn),且.求證:點(diǎn)在定直線上,并求出定直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點(diǎn)(1,1),

(1)求函數(shù)的解析式;

(2)判斷函數(shù)在(0,+)上的單調(diào)性并用定義證明;

(3)求在區(qū)間上的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果命題p∨q為真命題,p∧q為假命題,那么( )

A. 命題p,q均為真命題 B. 命題p,q均為假命題

C. 命題p,q有且只有一個(gè)為真命題 D. 命題p為真命題,q為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題:

垂直于同一平面的兩條直線相互平行;

平行于同一平面的兩條直線相互平行;

若一條直線平行于一個(gè)平面內(nèi)的無(wú)數(shù)條直線,那么這條直線平行于這個(gè)平面;

若一條直線垂直于一個(gè)平面內(nèi)的任一條直線,那么這條直線垂直于這個(gè)平面

其中真命題的個(gè)數(shù)是

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】面數(shù)最少的棱柱為________棱柱,共有________個(gè)面圍成.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間直角坐標(biāo)系中,點(diǎn)M(3,0,2)位于 (   )

A. y軸上 B. x軸上 C. xOz平面內(nèi) D. yOz平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

)求的單調(diào)區(qū)間;

)求的零點(diǎn)個(gè)數(shù);

)證明:曲線沒有經(jīng)過原點(diǎn)的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是

A. 在正三棱錐中,斜高大于側(cè)棱

B. 有一條側(cè)棱垂直于底面的棱柱是直棱柱

C. 底面是正方形的棱錐是正四棱錐

D. 有一個(gè)面是多邊形,其余各面均為三角形的幾何體是棱錐

查看答案和解析>>

同步練習(xí)冊(cè)答案