【題目】已知圓A:(x+1)2+y2=8,動(dòng)圓M經(jīng)過(guò)點(diǎn)B(1,0),且與圓A相切,O為坐標(biāo)原點(diǎn).
(Ⅰ)求動(dòng)圓圓心M的軌跡C的方程;
(Ⅱ)直線(xiàn)l與曲線(xiàn)C相切于點(diǎn)M,且l與x軸、y軸分別交于P、Q兩點(diǎn),若 =λ ,且λ∈[ ,2],求△OPQ面積S的取值范圍.
【答案】解:(Ⅰ)設(shè)動(dòng)圓M的半徑為r,依題意,|MA|=2 ﹣r,|MB|=r,
∴|MA|+|MB|=2 >|AB|=2,
∴M點(diǎn)軌跡是以A、B為焦點(diǎn)的橢圓,即2a=2 ,a= ,2c=2,c=1,
則b2=a2﹣c2=1,
∴橢圓C的標(biāo)準(zhǔn)方程為: +y2=1.
(Ⅱ)由題意可知,直線(xiàn)l的斜率存在且不為0,設(shè)l:y=kx+b,
,化簡(jiǎn)得:(1+2k2)x2+4kbx+2b2﹣2=0,
∵l與橢圓C相切于點(diǎn)M,設(shè)M(x0,y0),
∴△=8(1+2k2﹣b2)=0,即b2=1+2k2,
且2x0=﹣ =﹣ ,解得:x0=﹣ ,y0=﹣ +b= ,
∴點(diǎn)M的坐標(biāo)為(﹣ , ),
又l與x軸、y軸分別交于P、Q兩點(diǎn),
∴點(diǎn)P的坐標(biāo)為(﹣ ,0),點(diǎn)Q的坐標(biāo)為(0,b),
∴△OPQ的面積S= |OP||OQ|= ,又b2=1+2k2,
∴S= =|k|+ ,
∴ =( ﹣ , ), =( ,b﹣ ),
由 =λ 得, =λ(b﹣ ),化簡(jiǎn)得λ= = ,
由λ∈[ ,2],得k2∈[ ,1],|k|∈[ ,1],
又S=|k|+ ,且函數(shù)y=x+ 在[ , ]上單調(diào)遞減,在[ ,1]上單調(diào)遞增,
∴當(dāng)|k|= 時(shí),S取得最小值 ,當(dāng)|k|= 或1時(shí),S取得最大值 ,
∴△OPQ面積S的取值范圍是[ , ]
【解析】(Ⅰ)根據(jù)題意求得|MA|與|MB|的關(guān)系,結(jié)合橢圓的定義可知?jiǎng)訄A圓心的軌跡為橢圓,并求得其軌跡方程;(Ⅱ)設(shè)出直線(xiàn)l的方程,然后表示出點(diǎn)M,P,Q的坐標(biāo),從而表示出三角形OPQ的面積,再結(jié)合求得直線(xiàn)斜率k的取值范圍,從而求得△OPQ面積S的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知q和n均為給定的大于1的自然數(shù),設(shè)集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.
(1)當(dāng)q=2,n=3時(shí),用列舉法表示集合A.
(2)設(shè)s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.證明:若an<bn,則s<t.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的圖像如圖所示.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)l與拋物線(xiàn)交于P,Q兩點(diǎn),弦PQ的中點(diǎn)為N,經(jīng)過(guò)點(diǎn)N作y軸的垂線(xiàn)與C的準(zhǔn)線(xiàn)交于點(diǎn)T.
(Ⅰ)若直線(xiàn)l的斜率為1,且|PQ|=4,求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(Ⅱ)證明:無(wú)論p為何值,以線(xiàn)段TN為直徑的圓總經(jīng)過(guò)點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是圓內(nèi)一點(diǎn),直線(xiàn).
(1)若圓的弦恰好被點(diǎn)平分,求弦所在直線(xiàn)的方程;
(2)若過(guò)點(diǎn)作圓的兩條互相垂直的弦,求四邊形的面積的最大值;
(3)若, 是上的動(dòng)點(diǎn),過(guò)作圓的兩條切線(xiàn),切點(diǎn)分別為.證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)函數(shù)f′(x),對(duì)于任意的實(shí)數(shù)x,都有f(x)=4x2﹣f(﹣x),當(dāng)x∈(﹣∞,0)時(shí),f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,則實(shí)數(shù)m的取值范圍是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓C: 的左右焦點(diǎn)分別是F1 , F2 , 離心率為 ,過(guò)F1且垂直于x軸的直線(xiàn)被橢圓C截得的線(xiàn)段長(zhǎng)為1.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接PF1 , PF2 , 設(shè)∠F1PF2的角平分線(xiàn)PM交C的長(zhǎng)軸于點(diǎn)M(m,0),求m的取值范圍;
(3)在(2)的條件下,過(guò)點(diǎn)P作斜率為k的直線(xiàn)l,使得l與橢圓C有且只有一個(gè)公共點(diǎn),設(shè)直線(xiàn)PF1 , PF2的斜率分別為k1 , k2 , 若k≠0,試證明 為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)設(shè)函數(shù),求函數(shù)在區(qū)間上的值域;
(2)定義表示中較小者,設(shè)函數(shù) .
①求函數(shù)的單調(diào)區(qū)間及最值;
②若關(guān)于的方程有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在 的展開(kāi)式中,第6項(xiàng)為常數(shù)項(xiàng).
(Ⅰ)求含x2的項(xiàng)的系數(shù);
(Ⅱ)求展開(kāi)式中所有的有理項(xiàng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com