【題目】選修4-4:極坐標與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系,曲線的參數(shù)方程為為參數(shù)). 是曲線上兩點,點的極坐標分別為.

1)寫出曲線的普通方程和極坐標方程;

2)求的值.

【答案】(1);(2)4.

【解析】試題分析:(1)曲線的參數(shù)方程為為參數(shù)),消去參數(shù),化為普通方程是,由, 為參數(shù)),曲線的普通方程可化為極坐標, 為參數(shù));(2)方法1:由是圓上的兩點,且知為直徑,從而求得.方法2:由兩點化為直角坐標中點的坐標,利用兩點間距離公式求得、兩點間的距離.

試題解析:(1曲線的參數(shù)方程為為參數(shù)),

消去參數(shù),化為普通方程是

, 為參數(shù)).

曲線的普通方程可化為極坐標為參數(shù)).

2)方法1:由是圓上的兩點,

且知, 為直徑, .

方法2:由兩點化為直角坐標中點的坐標是, ,

兩點間的距離為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形的兩條對角線相交于點, 邊所在直線的方程為,點邊所在的直線上.

(Ⅰ)求邊所在直線的方程;

(Ⅱ)求矩形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照國家環(huán)保部發(fā)布的新修訂的《環(huán)境空氣質(zhì)量標準》,規(guī)定:PM2.5的年平均濃度不得超過35微克/立方米,國家環(huán)保部門在2016年10月1日到2017年1月30日這120天對全國的PM2.5平均濃度的監(jiān)測數(shù)據(jù)統(tǒng)計如下:

組別

PM2.5濃度(微克/立方米)

頻數(shù)(天)

第一組

32

第二組

64

第三組

16

第四組

115以上

8

(1)在這120天中抽取30天的數(shù)據(jù)做進一步分析,每一組應抽取多少天?

(2)在(1)中所抽取的樣本PM2.5的平均濃度超過75(微克/立方米)的若干天中,隨機抽取2天,求恰好有一天平均濃度超過115(微克/立方米)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點,且圓心在直線上.

1)求圓的方程.

2)設直線經(jīng)過點,且與圓相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內(nèi)角的對邊分別為,已知

(1)

(2),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面平面分別為棱的中點.求證:

(1)平面;

(2)平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A. 選修4-1:幾何證明選講

如圖,已知為圓的一條弦,點為弧的中點,過點任作兩條弦分別交于點.

求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2016高考北京文數(shù)】已知橢圓C:過點A(2,0),B(0,1)兩點.

I)求橢圓C的方程及離心率;

(Ⅱ)設P為第三象限內(nèi)一點且在橢圓C上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) . 

(Ⅰ)當時,求函數(shù)的極值;

(Ⅱ)當時,討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案