【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.

(1)試問(wèn)在抽取的學(xué)生中,男,女生各有多少人?

(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?

總計(jì)

男生身高

女生身高

總計(jì)

(3)在上述100名學(xué)生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.

參考公式:

參考數(shù)據(jù):

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

【答案】(1)40,60;(2)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為身高與性別有關(guān);(3).

【解析】

(1)根據(jù)直方圖求出男生的人數(shù)為40,再求女生的人數(shù);(2)完成列聯(lián)表,再利用獨(dú)立性檢驗(yàn)求出有的把握認(rèn)為身高與性別有關(guān);(3)利用古典概型的概率公式求出2人中恰好有一名女生的概率.

(1)直方圖中,因?yàn)樯砀咴?/span>的男生的頻率為0.4,

設(shè)男生數(shù)為,則,得.

由男生的人數(shù)為40,得女生的人數(shù)為.

(2)男生身高的人數(shù)

女生身高的人數(shù),

所以可得到下列列聯(lián)表:

總計(jì)

男生身高

30

10

40

女生身高

6

54

60

總計(jì)

36

64

100

,

所以能有的把握認(rèn)為身高與性別有關(guān);

(3)在之間的男生有12人,在之間的女生人數(shù)有6人.

按分層抽樣的方法抽出6人,則男生占4人,女生占2人.

設(shè)男生為,,,女生為,.

從6人任選2名有:,,,,,,,,,,,共15種可能,

2人中恰好有一名女生:,,,,,共8種可能,

故所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),mR

1)討論fx)的單調(diào)性;

2)若m∈(-1,0),證明:對(duì)任意的x1,x2[1,1-m],4fx1+x25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中,過(guò)點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個(gè)必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上一動(dòng)點(diǎn)P到定點(diǎn)C1,0)的距離與它到直線的距離之比為.

1)求點(diǎn)P的軌跡方程;

2)點(diǎn)O是坐標(biāo)原點(diǎn),A,B兩點(diǎn)在點(diǎn)P的軌跡上,F是點(diǎn)C關(guān)于原點(diǎn)的對(duì)稱點(diǎn),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的直徑AB=3,點(diǎn)C為⊙O上異于A,B的一點(diǎn),平面ABC,且,點(diǎn)M為線段VB的中點(diǎn).

1)求證:平面VAC

2)若AB與平面VAC所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個(gè)正三角形中,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自謝爾賓斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=(kx+ex2x,若fx)<0的解集中有且只有一個(gè)正整數(shù),則實(shí)數(shù)k的取值范圍為 (  )

A. [ ,B. ,]

C. [D. [

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分,1小問(wèn)5分,2小問(wèn)7分

圖,橢圓的左、右焦點(diǎn)分別為過(guò)的直線交橢圓于兩點(diǎn),且

1,求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

同步練習(xí)冊(cè)答案