【題目】函數(shù)f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段圖象過點(0,1),如圖所示.

(1)求函數(shù)f1(x)的表達式;

(2)將函數(shù)yf1(x)的圖象向右平移個單位,得函數(shù)yf2(x)的圖象,求yf2(x)的最大值,并求出此時自變量x的集合.

【答案】(1)f1(x)=2sin(2x).(2)ymax=2. x的取值集合為{x|xkZ}.

【解析】

(1)先求周期,再求ω,根據初相得φ,根據點(0,1)求A,(2)根據圖像變換得f2(x)解析式,并化簡,再根據余弦函數(shù)性質求最值以及對應自變量.

(1)由圖知,Tπ,于是ω=2.yAsin2x的圖象向左平移,

yAsin(2xφ)的圖象,于是φ=2·.(0,1)代入yAsin(2x),得A=2.

f1(x)=2sin(2x).

(2)依題意,f2(x)=2sin[2(x)+]=-2cos(2x),

2x=2π,即x (kZ)時,ymax=2.

x的取值集合為{x|x,k∈Z}.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數(shù)據:

單價x(元)

8

8.2

8.4

8.6

8.8

9

銷量y(件)

90

84

83

80

75

68

1)求回歸直線方程bxa,其中b=-20,ab

2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,已知(a﹣3b)cosC=c(3cosB﹣cosA).
(1)求 的值;
(2)若c= a,求角C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB于點M,點E是CD延長線上一點,AB=10,CD=8,3ED=4OM,EF切圓O于F,BF交CD于點G.

(1)求證:EF=EG;
(2)求線段MG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到準線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標為,求的值;

(2)設線段的中點為,點的坐標為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,直線x+y+1=0與橢圓交于P、Q兩點,且OPOQ,求該橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準x(噸),一位居民的月用水量不超過x的部分按平價收費,超過x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準x(噸),估計x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:

1證明直線l經過定點并求此點的坐標;

2若直線l不經過第四象限,求k的取值范圍;

3若直線lx軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設的面積為S,求S的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=6,b=4,那么輸出的s的值為(
A.17
B.22
C.18
D.20

查看答案和解析>>

同步練習冊答案