已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
(1)a="12" b=﹣3 (2)f(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞);
(3)(﹣∞,﹣1]∪
解析試題分析: (1)由極值的定義和已知條件可得b﹣c=﹣3﹣c,,即b=-3;對(duì)已知函數(shù)求導(dǎo),再由,列出管a,b 的等式,即可得到a的值.(2)由(1)可得到f(x)的表達(dá)式,然后對(duì)其求導(dǎo),由或,可得到函數(shù)的單調(diào)增區(qū)間或減區(qū)間.(3)求出f(x)的最小值﹣3﹣c,已知條件式f(x)≥﹣2c2恒成立可轉(zhuǎn)化為﹣3﹣c≥﹣2c2,解得c即可.
試題解析:解:(1)由題意知f(1)=﹣3﹣c,因此b﹣c=﹣3﹣c,從而b=﹣3。2分
又對(duì)f(x)求導(dǎo)得=x3(4alnx+a+4b),
由題意f'(1)=0,因此a+4b=0,得a=12 4分
(2)由(1)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1
當(dāng)0<x<1時(shí),f'(x)<0, f(x)單調(diào)遞減;當(dāng)x>1時(shí),f'(x)>0, f(x)單調(diào)遞增,
故 f(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞) 8分
(3)由(2)知,f(x)在x=1處取得極小值f(1)=﹣3﹣c,此極小值也是最小值,
要使f(x)≥﹣2c2(x>0)恒成立,只需﹣3﹣c≥﹣2c2 10分
即2c2﹣c﹣3≥0,從而(2c﹣3)(c+1)≥0,解得或c≤﹣1
所以c的取值范圍為(﹣∞,﹣1]∪ 12分
考點(diǎn):1.函數(shù)的導(dǎo)數(shù);2.單數(shù)的性質(zhì);3.不等式恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,已知(n∈N*).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:當(dāng)x>0時(shí),
(Ⅲ)令,數(shù)列的前項(xiàng)和為.利用(2)的結(jié)論證明:當(dāng)n∈N*且n≥2時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若,試確定函數(shù)的單調(diào)區(qū)間;
(2)若且對(duì)任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(Ⅱ)若對(duì)一切,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)在及時(shí)取得極值.
(1)求a、b的值;
(2)若對(duì)于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(Ⅱ)設(shè),若對(duì)任意,有,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在定義域內(nèi)為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若函數(shù)存在兩個(gè)零點(diǎn),且實(shí)數(shù)滿足,問:函數(shù)在處的切線能否平行于軸?若能,求出該切線方程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),;
(1)求證:函數(shù)在上單調(diào)遞增;
(2)設(shè),,若直線軸,求兩點(diǎn)間的最短距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com