在平面直角坐標系中,已知定點F(1,0),點在軸上運動,點在軸上,點
為平面內(nèi)的動點,且滿足,.
(1)求動點的軌跡的方程;
(2)設點是直線:上任意一點,過點作軌跡的兩條切線,,切點分別為,,設切線,的斜率分別為,,直線的斜率為,求證:.
(1),(2)詳見解析.
解析試題分析:(1)求動點軌跡方程,分四步。第一步,設所求動點坐標,設點,,.第二步,建立等量關系,由可知,點是的中點,所以即所以點,.所以,.由,可得,第三步,化簡等量關系,即.第四步,去雜或確定取值范圍,本題就是(2)證明三直線斜率關系,實質(zhì)研究其坐標關系. 設點,則過點的直線,聯(lián)立方程,整理得.則,化簡得.所以.又,故.
【解】(1)設點,,.
由可知,點是的中點,
所以即所以點,.
所以,. 3分
由,可得,即.
所以動點的軌跡的方程為. 5分
(2)設點,
由于過點的直線與軌跡:相切,
聯(lián)立方程,整理得. 7分
則,
化簡得.
顯然,,是關于的方程的兩個根,所以.
又,故.
所以命題得證. 10分
考點:軌跡問題的求解方法、直線和拋物線方程的位置關系
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的左、右焦點分別為,上頂點為A,在x軸負半軸上有一點B,滿足三點的圓與直線相切.
(1)求橢圓C的方程;
(2)過右焦點作斜率為k的直線與橢圓C交于M,N兩點,線段MN的垂直平分線與x軸相交于點P(m,0),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,其短軸兩端點為.
(1)求橢圓的方程;
(2)若是橢圓上關于軸對稱的兩個不同點,直線與軸分別交于點.判斷以為直徑的圓是否過點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓,經(jīng)過橢圓的右焦點F及上頂點B,過圓外一點傾斜角為的直線交橢圓于C,D兩點,
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點分別為和,離心率.
(1)求橢圓的方程;
(2)設直線()與橢圓交于、兩點,線段 的垂直平分線交軸于點,當變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設點().
(1)指出,并求與的關系式();
(2)求()的通項公式,并指出點列,, ,, 向哪一點無限接近?說明理由;
(3)令,數(shù)列的前項和為,設,求所有可能的乘積的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知橢圓的左、右焦點分別
為,其上頂點為已知是邊長為的正三角形.
(1)求橢圓的方程;
(2)過點任作一動直線交橢圓于兩點,記.若在線段上取一點,使得,當直線運動時,點在某一定直線上運動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:(a>b>0),過點(0,1),且離心率為.
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線l:x=2與x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當點P在橢圓C上運動時,恒為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率,長軸的左右端點分別為,.
(1)求橢圓的方程;
(2)設動直線與曲線有且只有一個公共點,且與直線相交于點.問在軸上是否存在定點,使得以為直徑的圓恒過定點,若存在,求出點坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com