【題目】20121218日,作為全國首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測的74個(gè)城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來,鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個(gè)監(jiān)測站點(diǎn)監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,52個(gè)監(jiān)測站點(diǎn),以9個(gè)站點(diǎn)測得的的平均值為依據(jù),播報(bào)我市的空氣質(zhì)量.

1)若某日播報(bào)的118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;

2)如圖是201811月的30天中的分布,11月份僅有一天內(nèi).

①鄭州市某中學(xué)利用每周日的時(shí)間進(jìn)行社會(huì)實(shí)踐活動(dòng),以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會(huì)實(shí)踐活動(dòng).以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會(huì)實(shí)踐活動(dòng)的概率;

②在創(chuàng)建文明城市活動(dòng)中,驗(yàn)收小組把鄭州市的空氣質(zhì)量作為一個(gè)評價(jià)指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評價(jià),設(shè)抽取到不小于180的天數(shù)為,求的分布列及數(shù)學(xué)期望.

【答案】1)平均值為172;(2)①;②分布列見解析,.

【解析】

1)利用題目所給平均值列方程,解方程求得重度污染區(qū)平均值.

(2)①求得月份小于的天數(shù),由此求得題目所求概率.

②利用超幾何分布分布列計(jì)算公式,計(jì)算出分布列,并求得數(shù)學(xué)期望.

1)設(shè)重度污染區(qū)的平均值為,則,解得.

即重度污染區(qū)平均值為172.

2)①由題意知,內(nèi)的天數(shù)為1,

由圖可知,內(nèi)的天數(shù)為17天,故11月份小于180的天數(shù)為,

,則該學(xué)校去進(jìn)行社會(huì)實(shí)踐活動(dòng)的概率為.

②由題意知,的所有可能取值為01,2,3,且

,

,

的分布列為

0

1

2

3

數(shù)學(xué)期望 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中m為常數(shù),且是函數(shù)的極值點(diǎn).

(Ⅰ)求m的值;

(Ⅰ)若上恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年春節(jié),一場突如其來的新型冠狀病毒感染的肺炎疫情,牽動(dòng)著我們每個(gè)人的心,嚴(yán)重?cái)_亂了大家的正常生活,在全國人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三個(gè)小區(qū)的志愿者人數(shù)分別為60,40,20,現(xiàn)采用分層抽樣的方法從這120名志愿者中隨機(jī)抽取6人去支援夕陽紅敬老院.若再從這6人中隨機(jī)抽取2名作為負(fù)責(zé)人,則這2名志愿者來自不同小區(qū)的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求f(x)的最大值;

2)設(shè)函數(shù),若對任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求a的取值范圍;

3)若數(shù)列的各項(xiàng)均為正數(shù),,.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測6月份該商場空調(diào)的銷售量;

(2)若該商場的營銷部對空調(diào)進(jìn)行新一輪促銷,對7月到12月有購買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營銷部調(diào)研機(jī)構(gòu)對其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購買意愿對應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再從這6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某度假酒店為了解會(huì)員對酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對酒店的“住宿滿意度”與“餐飲滿意度”都分為五個(gè)評分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為

(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);

(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;

(3)為提高對酒店的滿意度,現(xiàn)從的會(huì)員中隨機(jī)抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,則當(dāng)時(shí),討論的單調(diào)性;

(2)若,且當(dāng)時(shí),不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

(2)當(dāng)有兩個(gè)極值點(diǎn)時(shí),若的極大值小于整數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健身館某項(xiàng)目收費(fèi)標(biāo)準(zhǔn)為每次60元,現(xiàn)推出會(huì)員優(yōu)惠活動(dòng):具體收費(fèi)標(biāo)準(zhǔn)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

收費(fèi)比例

0.95

0.90

0.85

0.80

現(xiàn)隨機(jī)抽取了100位會(huì)員統(tǒng)計(jì)它們的消費(fèi)次數(shù),得到數(shù)據(jù)如下:

消費(fèi)次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項(xiàng)目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計(jì)1位會(huì)員至少消費(fèi)兩次的概率

2)某會(huì)員消費(fèi)4次,求這4次消費(fèi)獲得的平均利潤;

查看答案和解析>>

同步練習(xí)冊答案