【題目】如圖,在等腰直角中,,,點(diǎn)在線段.

(Ⅰ) ,求的長(zhǎng);

)若點(diǎn)在線段上,且,問:當(dāng)取何值時(shí),的面積最?并求出面積的最小值.

【答案】(Ⅰ))當(dāng)時(shí),的最大值為,此時(shí)的面積取到最小值.即2時(shí),的面積的最小值為

【解析】

:(1)△OMP,∠OPM=45°,OM=,OP=2,

由余弦定理得,OM2=OP2+MP2-2OP·MP·cos45°,

MP2-4MP+3=0,

解得MP=1MP=3.

(2)設(shè)∠POM=α,0°≤α≤60°,

△OMP,由正弦定理,

=,

所以OM=,

同理ON=.

SOMN=OM·ON·sin∠MON

=×

=

=

=

=

=

=.

因?yàn)?/span>0°≤α≤60°,

30°≤2α+30°≤150°,

所以當(dāng)α=30°時(shí),sin(2α+30°)的最大值為1,

此時(shí)△OMN的面積取到最小值.

∠POM=30°時(shí),△OMN的面積的最小值為8-4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新和團(tuán)隊(duì)建設(shè)能力的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識(shí)競(jìng)賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績(jī)情況,從中抽取50名學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成的頻率分布表,解答下列問題:

(1)完成頻率分布表(直接寫出結(jié)果);

(2)若成績(jī)?cè)?0.5分以上的學(xué)生獲一等獎(jiǎng),試估計(jì)全校獲一等獎(jiǎng)的人數(shù),現(xiàn)在從全校所有獲一等獎(jiǎng)的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加競(jìng)賽,某班共有2名同學(xué)榮獲一等獎(jiǎng),求該班同學(xué)恰有1人參加競(jìng)賽的概率.

分組

頻數(shù)

頻率

第1組

[60.5,70.5)

0.26

第2組

[70.5,80.5)

17

第3組

[80.5,90.5)

18

0.36

第4組

[90.5,100.5]

合計(jì)

50

1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十八大以來,我國(guó)精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國(guó)貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬人以上的目標(biāo),力爭(zhēng)2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對(duì)貧困戶(用表示,單位:萬戶)進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從20166月底到20196月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號(hào)表示,例如:201612月底(時(shí)間序號(hào)為2)貧困戶為5.2萬戶.

(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)到202012月底,該市能否實(shí)現(xiàn)貧困戶全部脫貧;

(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在20196月底時(shí),對(duì)全市貧困戶隨機(jī)抽取了100戶貧困戶,對(duì)每個(gè)家庭最主要經(jīng)濟(jì)收入來源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對(duì)全市所有貧困戶中,家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶,每一名農(nóng)業(yè)技術(shù)人員對(duì)口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對(duì)家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶?

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,公園內(nèi)有一塊邊長(zhǎng)為的正三角形空地,擬改建成花園,并在其中建一直道方便花園管理. 設(shè)分別在上,且均分三角形的面積.

1)設(shè)),,試將表示為的函數(shù)關(guān)系式;

2)若是灌溉水管,為節(jié)約成本,希望其最短,的位置應(yīng)在哪里?若是參觀路線,希望其最長(zhǎng),的位置應(yīng)在哪里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,,則下面結(jié)論正確的是(

A.上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

B.上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

C.上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線

D.上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,過直線上任一點(diǎn)向拋物線引兩條切線(切點(diǎn)為,且點(diǎn)軸上方).

(1)求證:直線過定點(diǎn),并求出該定點(diǎn);

(2)拋物線上是否存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組: ,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)根據(jù)“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產(chǎn)件數(shù)的中位數(shù)的估計(jì)值(四舍五入保留整數(shù));

(2)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

(3)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有 的把握認(rèn)為“生產(chǎn)能手與工人所在年齡組有關(guān)”?

生產(chǎn)能手

非生產(chǎn)能手

合計(jì)

25周歲以上組

25周歲以下組

合計(jì)

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB=,AC=3, BC=2,P△ABC內(nèi)的一點(diǎn).

(1)若△BPC是以BC為斜邊的等腰直角三角形PA長(zhǎng);

(2)∠BPC=,求△PBC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓+=1的左焦點(diǎn)為F,直線x-y-2=0x-y+2=0與橢圓分別相交于A,B,CD,則|AF|+|BF|+|CF|+|DF|=______

查看答案和解析>>

同步練習(xí)冊(cè)答案