【題目】(本題滿分12分)如圖13,四棱錐P ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD=,三棱錐P ABD的體積V=,求A到平面PBC的距離.
【答案】(1)略(2)
【解析】試題分析:證明線面平有兩種思路,一是尋求線線平行,二是尋求面面平行;已知三棱錐的體積求點(diǎn)到平面的距離,可借助面面垂直的性質(zhì)定理根據(jù)三棱錐的體積求出長,由于平面PAB,可以得出平面平面,可借助面面垂直的性質(zhì)定理做出點(diǎn),垂足為,可得平面,即的長為點(diǎn)到平面的距離,再求出,這是一種傳統(tǒng)方法.
試題解析:
(1)證明:設(shè)BD與AC的交點(diǎn)為O,連接EO.
因?yàn)锳BCD為矩形,所以O(shè)為BD的中點(diǎn).
又E為PD的中點(diǎn),所以EO∥PB.
EO平面AEC,PB平面AEC,
所以PB∥平面AEC.
(2)V=××PA×AB×AD=AB,由V=,可得AB=.
作AH⊥PB交PB于點(diǎn)H.
由題設(shè)知BC⊥平面PAB,所以BC⊥AH,因?yàn)镻B∩BC=B,所以AH⊥平面PBC.
又AH==,
所以點(diǎn)A到平面PBC的距離為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:設(shè)a,b∈R,則“a+b>4”是“a>2且b>2”的必要不充分條件;命題q:若 <0,則 , 夾角為鈍角,在命題①p∧q;②¬p∨¬q;③p∨¬q;④¬p∨q中,真命題是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品關(guān)稅與市場供應(yīng)量P的關(guān)系近似地滿足:P(x)=2 (其中t為關(guān)稅的稅率,且t∈[0, ],x為市場價格,b,k為正常數(shù)),當(dāng)t= 時,市場供應(yīng)量曲線如圖所示:
(1)根據(jù)函數(shù)圖象求k,b的值;
(2)若市場需求量Q,它近似滿足Q(x)=2 .當(dāng)P=Q時的市場價格為均衡價格,為使均衡價格控制在不低于9元的范圍內(nèi),求稅率t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點(diǎn),求證:
(Ⅰ)平面AB1E⊥平面B1BCC1;
(Ⅱ)A1C//平面AB1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)到定點(diǎn)的距離比到定直線的距離小1.
(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn)和.設(shè)線段, 的中點(diǎn)分別為,求證:直線恒過一個定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知函數(shù)f(x)=2cos x(sin x+cos x).
(1)求f的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列四個命題:
p1:若直線l和平面α內(nèi)的無數(shù)條直線垂直,則l⊥α;
p2:若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
p3:若 ,則x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,則sinA>sinB.
其中真命題的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某池塘中原有一塊浮草,浮草蔓延后的面積y(m2)與時間t(月)之間的函數(shù)關(guān)系是y=at﹣1(a>0,且a≠1),它的圖象如圖所示.給出以下命題: ①池塘中原有浮草的面積是0.5m2;
②到第7個月浮草的面積一定能超過60m2
③浮草每月增加的面積都相等;
④若浮草面積達(dá)到4m2 , 16m2 , 64m2所經(jīng)過時間分別為t1 , t2 , t3 , 則t1+t2<t3 , 其中所有正確命題的序號是( )
A.①②
B.①④
C.②③
D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com