【題目】如圖,在正四棱錐中,底邊,側(cè)棱, 為側(cè)棱上的點(diǎn).

(1)若平面,求二面角的余弦值的大小;

(2)若,側(cè)棱上是否存在一點(diǎn),使得平面,若存在,求的值;若不存在,試說(shuō)明理由.

【答案】(1);(2)存在, .

【解析】試題分析:

1)根據(jù)題意可建立空間直角坐標(biāo)系,然后根據(jù)兩平面法向量夾角的余弦值求得二面角的余弦值.(2先假設(shè)存在滿足題意的點(diǎn)使得平面,然后根據(jù)題意求得平面的法向量,由,可得,從而可得當(dāng)時(shí), 平面.

試題解析:

(1)如圖,連接,設(shè),由題意知平面,又,故兩兩垂直.

為坐標(biāo)原點(diǎn), 分別為軸,建立如圖所示的空間直角坐標(biāo)系.

, ,∴.

(1)由題意得 , ,

, ,

平面,

∴平面的一個(gè)法向量,

又平面的一個(gè)法向量,

,

由圖形知二面角為銳角,

∴所求二面角的余弦值為.

(2)假設(shè)在棱上存在一點(diǎn)使得平面.在上取點(diǎn),連接,

設(shè)平面的法向量為,

由題意得,

又點(diǎn) , ,

,得

,則

設(shè),

,

平面,可得,

解得

∴當(dāng)時(shí), 平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱中,分別是,的中點(diǎn),,為棱上的點(diǎn).

證明:;

證明:

是否存在一點(diǎn),使得平面與平面所成銳二面角的余弦值為?若存在,說(shuō)明點(diǎn)的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)上的最值;

(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求的值;

(2)設(shè)m,n∈N*,n≥m,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.

(1)求的值;

(2)證明:對(duì)任意的n∈N*,等式都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為兩種商品2019年前三季度銷(xiāo)售量的折線統(tǒng)計(jì)圖,結(jié)合統(tǒng)計(jì)圖,下列說(shuō)法中正確的有________.

1~6月,商品的月銷(xiāo)售量都超過(guò)商品

7月份商品與商品的銷(xiāo)售量相等

③對(duì)于商品,7~8月的月銷(xiāo)售量增長(zhǎng)率與8~9月的月銷(xiāo)售量增長(zhǎng)率相同

2019年前三季度商品的銷(xiāo)量逐月增長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,且經(jīng)過(guò)點(diǎn).

(1)求橢圓方程;

(2)過(guò)點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著互聯(lián)網(wǎng)經(jīng)濟(jì)逐步被人們接受,網(wǎng)上購(gòu)物的人群越來(lái)越多,網(wǎng)銀交易額也逐年增加,某地連續(xù)五年的網(wǎng)銀交易額統(tǒng)計(jì)表,如表所示:

年份

2012

2013

2014

2015

2016

網(wǎng)銀交易額(億元)

5

6

7

8

10

經(jīng)研究發(fā)現(xiàn),年份與網(wǎng)銀交易額之間呈線性相關(guān)關(guān)系,為了計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,,得到如表:

時(shí)間代號(hào)

1

2

3

4

5

0

1

2

3

5

1)求關(guān)于的線性回歸方程;

2)通過(guò)(1)中的方程,求出關(guān)于的回歸方程;

3)用所求回歸方程預(yù)測(cè)2020年該地網(wǎng)銀交易額.

(附:在線性回歸方程中,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, , .

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案