【題目】已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
【答案】(1) (2)
【解析】
試題分析:(1)因為x,y∈Z,且x∈[0,2],y∈[-1,1],基本事件是有限的,所以為古典概型,這樣求得總的基本事件的個數(shù),再求得滿足x,y∈Z,x+y≥0的基本事件的個數(shù),然后求比值即為所求的概率;(2)因為x,y∈R,且圍成面積,則為幾何概型中的面積類型,先求x,y∈Z,求x+y≥0表示的區(qū)域的面積,然后求比值即為所求的概率
試題解析:(1)設(shè)“x+y≥0,x,y∈Z”為事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.
則基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9個.其中滿足“x+y≥0”的基本事件有8個,∴P(A)=.
故x,y∈Z,x+y≥0的概率為.
(2)設(shè)“x+y≥0,x,y∈R”為事件B,
∵x∈[0,2],y∈[-1,1],則
基本事件為如圖四邊形ABCD區(qū)域,事件B包括的區(qū)域為其中的陰影部分.
∴P(B)====,故x,y∈R,x+y≥0的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題實數(shù)滿足(其中),命題實數(shù)滿足
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標原點,已知橢圓的離心率為,拋物線的準線方程為.
(1)求橢圓和拋物線的方程;
(2)設(shè)過定點的直線與橢圓交于不同的兩點,若在以為直徑的圓的外部,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人)
高校 | 相關(guān)人數(shù) | 抽取人數(shù) |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(I)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績在頻率分布直方圖中各段是均勻分布的)
(II)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(I)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.
(附參考公式)若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題P;實數(shù)x滿足x2-4ax+3a2<0,其中a>0;命題q:實數(shù)x滿足x2-5x+6≤0
(1)若a=1,且為真命題,求實數(shù)x的取值范圍。
(2)若p是q成立的必要不充分條件,求實數(shù)a 的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且x<0時,f(x)=1+2x.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖像;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:數(shù)列對一切正整數(shù)均滿足,稱數(shù)列為“凸數(shù)列”,以下關(guān)于“凸數(shù)列”的說法:
①等差數(shù)列一定是凸數(shù)列;
②首項,公比且的等比數(shù)列一定是凸數(shù)列;
③若數(shù)列為凸數(shù)列,則數(shù)列是單調(diào)遞增數(shù)列;
④若數(shù)列為凸數(shù)列,則下標成等差數(shù)列的項構(gòu)成的子數(shù)列也為凸數(shù)列.
其中正確說法的序號是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在原點,焦點在坐標軸上,點為拋物線上一點.
(1)求的方程;
(2)若點在上,過作的兩弦與,若,求證: 直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com