【題目】已知等腰梯形ABCD(如圖1所示),其中ABCD,EF分別為ABCD的中點(diǎn),且ABEF=2,CD=6,MBC中點(diǎn).現(xiàn)將梯形ABCD沿著EF所在直線折起,使平面EFCB⊥平面EFDA(如圖2所示),N是線段CD上一動(dòng)點(diǎn),且.

(1)求證:MN∥平面EFDA

(2)求三棱錐AMNF的體積.

【答案】(1)見解析;(2)1

【解析】(1)證明:過(guò)點(diǎn)MMPEF于點(diǎn)P,過(guò)點(diǎn)NNQFD于點(diǎn)Q,連接PQ.由題知,平面EFCB⊥平面EFDA

MPEF,平面EFCB∩平面EFDAEF,

MP⊥平面EFDA.

EFCF,EFDF,CFDFF,

EF⊥平面CFD.

NQ平面CFD,∴NQEF.

NQFDEFFDF,

NQ⊥平面EFDA,

MPNQ.

CNND,∴NQCF×3=2,

MP (BECF)=×(1+3)=2,

MPNQ,∴四邊形MNQP為平行四邊形.

MNPQ.

又∵MN平面EFDAPQ平面EFDA,

MN∥平面EFDA.

(2)延長(zhǎng)DACB相交于一點(diǎn)H,則HCB,HDA.

又∵CB平面FEBC,DA平面FEAD.

H∈平面FEBC,H∈平面FEAD

H∈平面FEBC∩平面FEADEF,

DA,FE,CB交于一點(diǎn)H,且HEEF=1.

V三棱錐FCDHV三棱錐CHFD·SHFD·CF,

又由平面幾何知識(shí)得,則,

V三棱錐AMNFV三棱錐FAMNV三棱錐FCDH=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,三個(gè)內(nèi)角所對(duì)的邊分別為,滿足.

(1) 求角的大小;

(2),求,的值.(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若,則稱的“不動(dòng)點(diǎn)”;若,則稱的“穩(wěn)定點(diǎn)”.函數(shù)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體QPABCD為一簡(jiǎn)單組合體,在底面ABCD中,∠DAB=60°,ADDC,ABBCQD⊥平面ABCD,PAQDPA=1,ADABQD=2.

(1)求證:平面PAB⊥平面QBC

(2)求該組合體QPABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,四邊形為直角梯形, ,四邊形為矩形,且, , 的中點(diǎn).

(1)求證: 平面;

(2)若,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為2,且橢圓的離心率為.

(1)求橢圓的方程;

(2)過(guò)橢圓的上焦點(diǎn)作相互垂直的弦,,求為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為函數(shù)的極值點(diǎn).

(1)證明:當(dāng)時(shí), ;

(2)對(duì)于任意,都存在,使得,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)?0,+∞),且對(duì)一切x>0,y>0都有,當(dāng)時(shí),有

(1)求f(1)的值;

(2)判斷f(x)的單調(diào)性并加以證明;

(3)若f(4)=2,求f(x)在[1,16]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案