【題目】已知橢圓的離心率為,左、右焦點分別為圓, 是上一點, ,且.
(1)求橢圓的方程;
(2)當過點的動直線與橢圓相交于不同兩點時,線段上取點,且滿足,證明點總在某定直線上,并求出該定直線.
【答案】(1)(2)見解析
【解析】試題分析:(1)本問主要考查求橢圓標準方程,由,可得,所以,則在中, , ,再根據(jù)余弦定理及,可以求出的值,于是可以求出橢圓的方程;(2)本問主要考查直線與橢圓的綜合應用,分析題意可知直線的斜率顯然存在,故設(shè)直線方程為,再聯(lián)立直線方程與橢圓方程,消去未知數(shù)得到關(guān)于的一元二次方程,根據(jù)韋達定理表示出兩點橫坐標之和及橫坐標之積,于是設(shè)點 , 將題中條件轉(zhuǎn)化為橫坐標的等式,于是可以得出滿足的方程,即可以證明總在一條直線上.
試題解析:(1)由已知得,且,
在中,由余弦定理得,解得.
則,所以橢圓的方程為.
(2)由題意可得直線的斜率存在,
設(shè)直線的方程為,即,
代入橢圓方程,整理得,
設(shè),則.
設(shè),由得
(考慮線段在軸上的射影即可),
所以,
于是,
整理得,(*)
又,代入(*)式得,
所以點總在直線上.
科目:高中數(shù)學 來源: 題型:
【題目】(文)已知矩形ABB1A1是圓柱體的軸截面,O、O1分別是下底面圓和上底面圓的圓心,母線長與底面圓的直徑長之比為2:1,且該圓柱體的體積為32π,如圖所示.
(1)求圓柱體的側(cè)面積S側(cè)的值;
(2)若C1是半圓弧 的中點,點C在半徑OA上,且OC= OA,異面直線CC1與BB1所成的角為θ,求sinθ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓和直線,直線, 都經(jīng)過圓外定點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于兩點,與交于點,且線段的中點為,
求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當平面與平面垂直時,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[﹣ , ]上的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()過點,且離心率為,過點的直線與橢圓交于, 兩點.
(Ⅰ)求橢圓的的標準方程;
(Ⅱ)已知為坐標原點,且,求面積的最大值以及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體中,,是棱上的一點.
(1)求證:平面;
(2)求證:;
(3)若是棱的中點,在棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com