【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為,為等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于,兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(1);(2)見(jiàn)解析
【解析】
(1)利用表示出點(diǎn)到直線的距離;再利用和的關(guān)系得到方程,求解得到標(biāo)準(zhǔn)方程;(2)當(dāng)直線斜率存在時(shí),假設(shè)直線方程,利用斜率之和為得到與的關(guān)系,將直線方程化為,從而得到定點(diǎn);當(dāng)斜率不存在時(shí),發(fā)現(xiàn)直線也過(guò)該定點(diǎn),從而求得結(jié)果.
(1)解:由題意可知:直線的方程為,即
則
因?yàn)?/span>為等腰直角三角形,所以
又
可解得,,
所以橢圓的標(biāo)準(zhǔn)方程為
(2)證明:由(1)知
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為
代入,得
所以,即
設(shè),,則,
因?yàn)橹本與直線的斜率之和為
所以
整理得
所以直線的方程為
顯然直線經(jīng)過(guò)定點(diǎn)
當(dāng)直線的斜率不存在時(shí),設(shè)直線的方程為
因?yàn)橹本與直線的斜率之和為,設(shè),則
所以,解得
此時(shí)直線的方程為
顯然直線也經(jīng)過(guò)該定點(diǎn)
綜上,直線恒過(guò)點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,曲線由部分橢圓:和部分拋物線:連接而成,與的公共點(diǎn)為,,其中所在橢圓的離心率為.
(Ⅰ)求,的值;
(Ⅱ)過(guò)點(diǎn)的直線與,分別交于點(diǎn),(,,,中任意兩點(diǎn)均不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】社區(qū)服務(wù)是高中學(xué)生社會(huì)實(shí)踐活動(dòng)的一個(gè)重要內(nèi)容,漢中某中學(xué)隨機(jī)抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務(wù)的時(shí)間,按,,,,(單位:小時(shí))進(jìn)行統(tǒng)計(jì),得出男生參加社區(qū)服務(wù)時(shí)間的頻率分布表和女生參加社區(qū)服務(wù)時(shí)間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務(wù)時(shí)間的頻率分布表和女生參加社區(qū)服務(wù)時(shí)間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務(wù)時(shí)間的頻率分布表
社區(qū)服務(wù)時(shí)間 | 人數(shù) | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計(jì) | 100 | 1 |
學(xué)生社區(qū)服務(wù)時(shí)間合格與性別的列聯(lián)表
不合格的人數(shù) | 合格的人數(shù) | |
男 | ||
女 |
(2)按高中綜合素質(zhì)評(píng)價(jià)的要求,高中學(xué)生每年參加社區(qū)服務(wù)的時(shí)間不少于20個(gè)小時(shí)才為合格,根據(jù)上面的統(tǒng)計(jì)圖表,完成抽取的這200名學(xué)生參加社區(qū)服務(wù)時(shí)間合格與性別的列聯(lián)表,并判斷是否有以上的把握認(rèn)為參加社區(qū)服務(wù)時(shí)間達(dá)到合格程度與性別有關(guān),并說(shuō)明理由.
(3)用以上這200名學(xué)生參加社區(qū)服務(wù)的時(shí)間估計(jì)全市9萬(wàn)名高中學(xué)生參加社區(qū)服務(wù)時(shí)間的情況,并以頻率作為概率.
(i)求全市高中學(xué)生參加社區(qū)服務(wù)時(shí)間不少于30個(gè)小時(shí)的人數(shù).
(ⅱ)對(duì)我市高中生參加社區(qū)服務(wù)的情況進(jìn)行評(píng)價(jià).
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義向量的“相伴函數(shù)”為,函數(shù)的“相伴向量”為,其中O為坐標(biāo)原點(diǎn),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè),求證:;
(2)已知且,求其“相伴向量”的模;
(3)已知為圓上一點(diǎn),向量的“相伴函數(shù)”在處取得最大值,當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時(shí)也解決了很多勞動(dòng)力的就業(yè)問(wèn)題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計(jì)解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C(jī)三百多萬(wàn)人次,梁某即為此類網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計(jì)某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、.
(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
(2)網(wǎng)約車計(jì)費(fèi)細(xì)則如下:起步價(jià)為5元,行駛路程不超過(guò)時(shí),租車費(fèi)為5元,若行駛路程超過(guò),則按每超出(不足也按計(jì)程)收費(fèi)3元計(jì)費(fèi).依據(jù)以上條件,計(jì)算梁某一天中出車一次收入的均值和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年學(xué)雷鋒日,某中學(xué)計(jì)劃從高中三個(gè)年級(jí)選派4名教師和若干名學(xué)生去當(dāng)學(xué)雷鋒文明交通宣傳志愿者,用分層抽樣法從高中三個(gè)年級(jí)的相關(guān)人員中抽取若干人組成文明交通宣傳小組,學(xué)生的選派情況如下:
年級(jí) | 相關(guān)人數(shù) | 抽取人數(shù) |
高一 | 99 | |
高二 | 27 | |
高三 | 18 | 2 |
(Ⅰ)求,的值;
(Ⅱ)若從選派的高一、高二、高三年級(jí)學(xué)生中抽取3人參加文明交通宣傳,求他們中恰好有1人是高三年級(jí)學(xué)生的概率;
(Ⅲ)若4名教師可去、、三個(gè)學(xué)雷鋒文明交通宣傳點(diǎn)進(jìn)行文明交通宣傳,其中每名教師去、、三個(gè)文明交通宣傳點(diǎn)是等可能的,且各位教師的選擇相互獨(dú)立.記到文明交通宣傳點(diǎn)的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)公園有個(gè)池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點(diǎn)D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準(zhǔn)備新建造一個(gè)荷塘,分別在AB,BC,CA上取點(diǎn)D,E,F,如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求證:橢圓中斜率為的平行弦的中點(diǎn)軌跡必過(guò)橢圓中心;
(2)用作圖方法找出下面給定橢圓的中心;
(3)我們把由半橢圓與半橢圓合成的曲線稱作“果圓”,其中,,.如圖,設(shè)點(diǎn),,是相應(yīng)橢圓的焦點(diǎn),,和,是“果圓” 與,軸的交點(diǎn). 連結(jié)“果圓”上任意兩點(diǎn)的線段稱為“果圓”的弦.試研究:是否存在實(shí)數(shù),使斜率為的“果圓”平行弦的中點(diǎn)軌跡總是落在某個(gè)橢圓上?若存在,求出所有可能的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進(jìn)入千千萬(wàn)萬(wàn)的家庭.大部分的車主在購(gòu)買汽車時(shí),會(huì)在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計(jì):
購(gòu)買了轎車(輛) | 購(gòu)買了(輛) | |
歲以下車主 | ||
歲以下車主 |
表
圖
(I)根據(jù)表,是否有的把握認(rèn)為年齡與購(gòu)買的汽車車型有關(guān)?
(II)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)用表中的頻率估計(jì)概率,隨機(jī)調(diào)查名歲以下車主,設(shè)其中購(gòu)買了轎車的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com