【題目】已知橢圓的焦點與雙曲線的焦點重合,并且經(jīng)過點.

(Ⅰ)求橢圓C的標準方程;

(II) 設(shè)橢圓C短軸的上頂點為P,直線不經(jīng)過P點且與相交于、兩點,若直線PA與直線PB的斜率的和為,判斷直線是否過定點,若是,求出這個定點,否則說明理由.

【答案】(Ⅰ);(II)過定點。

【解析】

Ⅰ)推導(dǎo)出,從而焦點F1,0),F2,0),由橢圓定義得a=2,b=1,由此能求出橢圓的標準方程.

II先考慮斜率不存在時,不存在兩個交點,舍去,斜率存在時設(shè)直線l方程為:ykx+mAx1,y1),Bx2,y2),由,代入1得到m=﹣2k﹣1,代入直線方程即可得到定點

(Ⅰ)雙曲線的焦點為,,亦即橢圓C的焦點,

,

又橢圓經(jīng)過點.

由橢圓定義得,

解得

∴橢圓的方程為:
(II)當斜率不存在時,設(shè)

,

得t=2,此時過橢圓右頂點,不存在兩個交點,故不滿足題意.

當斜率存在時,設(shè)

,

聯(lián)立,整理得 ,

,

,此時,存在使得成立.

∴直線的方程為,即,

,時,上式恒成立,所以過定點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足 =
(Ⅰ)求角A的大;
(Ⅱ)若a=2 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣a,g(x)=x+2.
(1)當a=1時,求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求證: 中至少有一個不小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=﹣x+3與橢圓E有且只有一個公共點T.
(Ⅰ)求橢圓E的方程及點T的坐標;
(Ⅱ)設(shè)O是坐標原點,直線l′平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數(shù)λ,使得|PT|2=λ|PA||PB|,并求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的導(dǎo)函數(shù),若f(α)=0,f'(α)>0,且f(x)在區(qū)間[α, +α)上沒有最小值,則ω取值范圍是(
A.(0,2)
B.(0,3]
C.(2,3]
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上任意一點到直線的距離是它到點的距離的2倍.

(1) 求曲線的方程;

(2) 過點的直線與曲線交于兩點.若的中點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】14分)已知ab為常數(shù),且a≠0,函數(shù)fx=﹣ax+b+axlnx,fe=2e=2.71828…是自然對數(shù)的底數(shù)).

I)求實數(shù)b的值;

II)求函數(shù)fx)的單調(diào)區(qū)間;

III)當a=1時,是否同時存在實數(shù)mMmM),使得對每一個t∈[m,M],直線y=t與曲線y=fx)(x∈[,e])都有公共點?若存在,求出最小的實數(shù)m和最大的實數(shù)M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒有公共點,求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax2(a∈R)
(Ⅰ) 討論f(x)的單調(diào)性;
(Ⅱ) 若對于x∈(0,+∞),f(x)≤a﹣1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案