【題目】如圖,在四棱錐中, 是正方形, 平面 , , 分別是 , , 的中點.

1)求證:平面平面

2)在線段上確定一點,使平面,并給出證明.

【答案】(1)見解析;(2)見解析

【解析】試題分析:1)先通過得到線面平行即,同理可證,根據(jù)面面平行判定定理可得結果;(2)為線段中點時, 平面,通過先證,得到,根據(jù)等腰三角形的性質得,運用線面垂直的判定定理即可得到結論.

試題解析:中, 分別是, 的中點,∴,又∵四邊形為正方形,得,,平面, .同理,, 是面內相交直線,∴平面平面 中點時,

2為線段中點時, 平面,證明:取中點,連接 , ,且,∴四邊形為梯形,由 ,得, ,,又,為等腰直角三角形, 為斜邊中點,∴,, 是面內的相交直線,∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知兩點A(1,2),B(3,1)到直線l距離分別是 , ,則滿足條件的直線l共有( )條.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明計劃在811日至820日期間游覽某主題公園,根據(jù)旅游局統(tǒng)計數(shù)據(jù),該主題公園在此期間“游覽舒適度”(即在園人數(shù)與景區(qū)主管部門核定的最大瞬時容量之比, 以下為舒適, 為一般, 以上為擁擠),情況如圖所示,小明隨機選擇8月11日至8月19日中的某一天到達該主題公園,并游覽.

(1)求小明連續(xù)兩天都遇上擁擠的概率;

(2)設是小明游覽期間遇上舒適的天數(shù),求的分布列和數(shù)學期望;

(3)由圖判斷從哪天開始連續(xù)三天游覽舒適度的方差最大?(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和Sn滿足:Sn=n2 , 等比數(shù)列{bn}滿足:b2=2,b5=16
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中石化集團獲得了某地深海油田塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質資料,進入全面勘探時期后,集團按網(wǎng)絡點米布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口斷井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:

井號

坐標

鉆探深度

出油量

(1)號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預報值;

(2)現(xiàn)準備勘探新井,若通過號并計算出的的值(精確到)與(1)中的值差不超過,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計算結果:

(3)設出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質井,那么在原有口井中任意勘探口井,求勘探優(yōu)質井數(shù)的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內的動點P到定直線lx的距離與點P到定點F(0)之比為.

(1)求動點P的軌跡C的方程;

(2)若點N為軌跡C上任意一點(不在x軸上),過原點O作直線AB,交(1)中軌跡C于點AB,且直線AN、BN的斜率都存在,分別為k1、k2,問k1·k2是否為定值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?

購買意愿強

購買意愿弱

合計

20~40歲

大于40歲

合計

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調區(qū)間;

(Ⅱ)對任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, yi=184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程y=bx+a;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.
附:線性回歸方程y=bx+a中,b= ,a= ﹣b ,其中 , 為樣本平均值.

查看答案和解析>>

同步練習冊答案