【題目】某城市有一直角梯形綠地,其中,km,km.現(xiàn)過邊界上的點處鋪設一條直的灌溉水管,將綠地分成面積相等的兩部分.
(1)如圖①,若為的中點,在邊界上,求灌溉水管的長度;
(2)如圖②,若在邊界上,求灌溉水管的最短長度.
【答案】(1)(2)
【解析】
試題分析:(1)由面積相等建立等量關(guān)系:先確定直角梯形高,求得直角梯形面積,再表示四邊形的面積:分割成一個小直角梯形及一個直角三角形,其中為中點,根據(jù)四邊形的面積為直角梯形面積一半,可解得,進而求得(2)易得,進而可得,其中,,根據(jù)的面積為直角梯形面積一半,可解得,再由余弦定理可得,利用基本不等式求最值
試題解析:(1)因為,,,
所以,……………………………………2分
取中點,
則四邊形的面積為,
即,
解得,…………………………………………6分
所以(km).
故灌溉水管的長度為km.……………………8分
(2)
設,,在中,,
所以在中,,
所以,
所以的面積為,
又,所以,即.……………………12分
在中,由余弦定理,得,
當且僅當時,取“”.
故灌溉水管的最短長度為km.……………………………………16分
科目:高中數(shù)學 來源: 題型:
【題目】已知圓內(nèi)有一點為過點且傾斜角為的弦.
(1)當時,求弦的長;
(2)當弦被平分時,圓經(jīng)過點且與直線相切于點,求圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2009年推出一種新型家用轎車,購買時費用為萬元,每年應交付保險費、養(yǎng)路費及汽油費共萬元,汽車的維修費為:第一年無維修費用,第二年為萬元,從第三年起,每年的維修費均比上一年增加萬元.(1)設該輛轎車使用年的總費用(包括購買費用、保險費、養(yǎng)路費、汽油費及維修費)為,求的表達式;(2)這種汽車使用多少年報廢最合算(即該車使用多少年,年平均費用最少)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面是正三角形)中,是棱上一點.
(1)若分別是的中點,求證:平面;
(2)若是上靠近點的一個三等分點,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左、右焦點分別為,右頂點為,上頂點為,已知.
(1)求橢圓的離心率;
(2)設為橢圓上異于其頂點的一點,以線段為直徑的圓經(jīng)過點,經(jīng)過原點的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,,是6與的等差中項.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使不等式恒成立,若存在,求出的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)當,時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,若對任意恒成立,求實數(shù)的取值范圍;
(3)設函數(shù)的圖象在兩點,處的切線分別為,,若,,且,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com