【題目】設函數.
(1)若函數是R上的單調增函數,求實數a的取值范圍;
(2)設, 是的導函數.
①若對任意的,求證:存在使;
②若,求證: .
【答案】(1) ;(2)①.證明見解析;②.證明見解析.
【解析】試題分析:(1)由題意, 對恒成立,根據,等價為對恒成立,即可求得得取值范圍;(2)①分別求得與,若,則存在,使,從而得,取,則,即可證明;②不妨設,令,則,由(1)知函數單調遞增,則,從而,根據,推出,只需證明成立,即只需證明成立,設,求得函數的單調性,即可證明.
試題解析:(1)由題意, 對恒成立.
∵
∴對恒成立,
∵
∴,從而.
(2)①,則.
若,則存在,使,不合題意.
∴.
取,則.
此時.
∴存在,使.
②依題意,不妨設,令,則.
由(1)知函數單調遞增,則,從而.
∵
∴
∴.
∴.
下面證明,即證明,只要證明.
設,則在恒成立.
∴在單調遞減,故,從而得證.
∴,即.
科目:高中數學 來源: 題型:
【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標和,制成下圖,其中“”表示甲村貧困戶,“”表示乙村貧困戶.
若,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;
若,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.
(1)從甲村50戶中隨機選出一戶,求該戶為“今年不能脫貧的絕對貧困戶”的概率;
(2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用表示所選3戶中乙村的戶數,求的分布列和數學期望;
(3)試比較這100戶中,甲、乙兩村指標的方差的大。ㄖ恍鑼懗鼋Y論).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二奧賽班N名學生的物理測評成績(滿分120分)分布直方圖如下,已知分數在100~110的學生數有21人。
(Ⅰ)求總人數N和分數在110~115分的人數n;
(Ⅱ)現準備從分數在110~115分的n名學生(女生占)中任選2人,求其中恰好含有一名女生的概率;
(Ⅲ)為了分析某個學生的學習狀態(tài),對其下一階段的學習提供指導性建議,對他前7次考試的數學成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。
數學 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數學成績x是線性相關的,若該生的數學成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數據其回歸線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閱讀如圖所示的程序框圖,解答下列問題:
(1)求輸入的的值分別為時,輸出的的值;
(2)根據程序框圖,寫出函數()的解析式;并求當關于的方程有三個互不相等的實數解時,實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在校體育運動會中,甲乙丙三支足球隊進行單循環(huán)賽(即每兩隊比賽一場),共賽三場,每場比賽勝者得3分,負者得0分,沒有平局.在每場比賽中,甲勝乙的概率為甲勝丙的概率為乙勝丙的概率為
(1)求甲隊獲第一名且丙隊獲第二名的概率;
(2)求在該次比賽中甲隊至少得3分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某建筑公司打算在一處工地修建一座簡易儲物間.該儲物間室內地面呈矩形形狀,面積為,并且一面緊靠工地現有圍墻,另三面用高度一定的矩形彩鋼板圍成,頂部用防雨布遮蓋,其平面圖如圖所示.已知該型號彩鋼板價格為100元/米,整理地面及防雨布總費用為500元,不受地形限制,不考慮彩鋼板的厚度,記與墻面平行的彩鋼板的長度為米.
(1)用表示修建儲物間的總造價(單位:元);
(2)如何設計該儲物間,可使總造價最低?最低總造價為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·全國Ⅱ卷)如圖,四棱錐P-ABCD中,側面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點.
(1)證明:直線CE∥平面PAB;
(2)點M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com