【題目】若數(shù)列中存在三項(xiàng),按一定次序排列構(gòu)成等比數(shù)列,則稱等比源數(shù)列。

1)在無窮數(shù)列中,,求數(shù)列的通項(xiàng)公式;

2)在(1)的結(jié)論下,試判斷數(shù)列是否為等比源數(shù)列,并證明你的結(jié)論;

3)已知無窮數(shù)列為等差數(shù)列,且,),求證:數(shù)列等比源數(shù)列”.

【答案】1;(2)不是,證明見解析;(3)證明見解析.

【解析】

1)由,可得出,則數(shù)列為等比數(shù)列,然后利用等比數(shù)列的通項(xiàng)公式可間接求出

2)假設(shè)數(shù)列為“等比源數(shù)列”,則此數(shù)列中存在三項(xiàng)成等比數(shù)列,可得出,展開后得出,然后利用數(shù)的奇偶性即可得出結(jié)論;

3)設(shè)等差數(shù)列的公差為,假設(shè)存在三項(xiàng)使得,展開得出,從而可得知,當(dāng),時,原命題成立.

1,得,即,且.

所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則

因此,

2)數(shù)列不是“等比源數(shù)列”,下面用反證法來證明.

假設(shè)數(shù)列是“等比源數(shù)列”,則存在三項(xiàng)、,設(shè).

由于數(shù)列為單調(diào)遞增的正項(xiàng)數(shù)列,則,所以.

,化簡得,

等式兩邊同時除以,

,且、、,則,,,

為偶數(shù),為奇數(shù),等式不成立.

因此,數(shù)列中不存在任何三項(xiàng),按一定的順序排列構(gòu)成“等比源數(shù)列”;

3)不妨設(shè)等差數(shù)列的公差.

當(dāng)時,等差數(shù)列為非零常數(shù)列,此時,數(shù)列為“等比源數(shù)列”;

當(dāng)時,,則數(shù)列中必有一項(xiàng),

為了使得數(shù)列為“等比源數(shù)列”,只需數(shù)列中存在第項(xiàng)、第項(xiàng)使得

且有,即,

,

當(dāng)時,即當(dāng),時,

等式成立,

所以,數(shù)列中存在、成等比數(shù)列,因此,等差數(shù)列是“等比源數(shù)列”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中的導(dǎo)函數(shù),設(shè),且恒成立.

1)求的取值范圍;

2)設(shè)函數(shù)的零點(diǎn)為,函數(shù)的極小值點(diǎn)為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓,設(shè)是橢圓上任一點(diǎn),從原點(diǎn)向圓作兩條切線,切點(diǎn)分別為

(1)若直線互相垂直,且點(diǎn)在第一象限內(nèi),求點(diǎn)的坐標(biāo);

(2)若直線的斜率都存在,并記為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中是自然對數(shù)的底數(shù).

,使得不等式成立,試求實(shí)數(shù)的取值范圍;

)若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、滿足:,

1)求,,;

2)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng)公式;

3)設(shè),若不等式對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,是等邊三角形,是直角三角形,中點(diǎn).

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】任意實(shí)數(shù),,定義,設(shè)函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,,則____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)列、滿足:,,記

(1)若,,求數(shù)列的通項(xiàng)公式;

(2)證明:數(shù)列是等差數(shù)列;

(3)定義,證明:若存在,使得為整數(shù),且有兩個整數(shù)零點(diǎn),則必有無窮多個有兩個整數(shù)零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案