【題目】某公司經營一批進價為每件400元的商品,在市場調查時發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間的關系如下表所示:
x/元 | 500 | 600 | 700 | 800 | 900 |
y/件 | 10 | 8 | 9 | 6 | 1 |
(1)求y關于x的回歸直線方程.
(2)借助回歸直線方程,預測銷售單價為多少元時,日利潤最大?
【答案】(1);(2)720
【解析】
(1)由數(shù)據(jù)先求得x和y的平均值,再根據(jù)公式得到回歸方程即可;(2)由第一問可得到ω=-0.02x2+28.8x-8320,根據(jù)二次函數(shù)的性質得到x=720時取得最值.
(1)因為=700,==6.8,所以,===-0.02,=-=6.8-(-0.02)×700=20.8,于是得到y(tǒng)關于x的回歸直線方程為=-0.02x+20.8.
(2)設日利潤為ω元,銷售單價為x元時,ω=(x-400)(-0.02x+20.8)=-0.02x2+28.8x-8320,所以當x==720時,ω取最大值.所以銷售單價為720元時,日利潤最大.
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在(﹣∞,0)內單調遞增的為( )
A.y=x4+2x
B.y=2|x|
C.y=2x﹣2﹣x
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓方程;
(2)設不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的導函數(shù)為f′(x),對任意的x∈R,都有2f′(x)>f(x)成立,則( )
A. 3f(2ln 2)>2f(2ln 3)
B. 3f(2ln 2)<2f(2ln 3)
C. 3f(2ln 2)=2f(2ln 3)
D. 3f(2ln 2)與2f(2ln 3)的大小不確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的方程;
(2)求 的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:|OR||OS|為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin2( +x)﹣ cos2x﹣1,x∈R,若函數(shù)k(x)=f(x+a)的圖象關于點(﹣ ,0)對稱,且α∈(0,π),則α=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=-x3+2ax2-3a2x(a∈R且a≠0).
(1)當a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;
(2)當a>0時,求函數(shù)y=f(x)的單調區(qū)間和極值;
(3)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x3﹣12x+b,則下列結論正確的是( )
A.函數(shù)f(x)在(﹣∞,﹣1)上單調遞增
B.函數(shù)f(x)在(﹣∞,﹣1)上單調遞減
C.若b=﹣6,則函數(shù)f(x)的圖象在點(﹣2,f(﹣2))處的切線方程為y=10
D.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個公共點
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x∈R,y∈R,若復數(shù)(x2+y2-4)+(x-y)i是純虛數(shù),則點(x,y)的軌跡是( )
A. 以原點為圓心,以2為半徑的圓
B. 兩個點,其坐標為(2,2),(-2,-2)
C. 以原點為圓心,以2為半徑的圓和過原點的一條直線
D. 以原點為圓心,以2為半徑的圓,并且除去兩點(,),(-,-)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com