【題目】已知函數(shù)是定義在上的偶函數(shù).時, .

(1) 求曲線在點處的切線方程;

(2) 若關于的不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)是偶函數(shù),當時, ,可得當時, , ,求出可得切線斜率,求出,可得切點坐標,由點斜式可得切線方程;(2)令,則原命題等價于 恒成立, 即恒成立,設,利用導數(shù)研究函數(shù)的單調(diào)性,求出的最大值為,從而可得實數(shù)的取值范圍為.

試題解析:因為為偶函數(shù),所以,

時,則,故 ,所以

從而得到,

(1)當時, ,所以

所以在點的切線方程為: ,即

(2)關于的不等式恒成立,即 恒成立

,則原命題等價于, 恒成立,

恒成立,

,

時, ,則遞增;當時, ,則遞減;

所以,當時, 取極大值,也是最大值,

所以,

即實數(shù)a的范圍為 .

【方法點晴】本題主要考查利用導數(shù)求曲線切線方程以及利用導數(shù)研究函數(shù)的單調(diào)性與最值、不等式恒成立問題,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導數(shù),即在點 出的切線斜率(當曲線處的切線與軸平行時,在 處導數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)sin2axsin ax·cos ax (a>0)的圖象與直線yb相切,并且切點的橫坐標依次成公差為的等差數(shù)列.

(1)a,b的值;

(2)x0,且x0yf(x)的零點,試寫出函數(shù)yf(x)上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的下頂點為,點是橢圓上異于點的動點,直線分別與軸交于點,且點是線段的中點.當點運動到點處時,點的坐標為

(1)求橢圓的標準方程;

(2)設直線軸于點,當點均在軸右側(cè),且時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:

AFGC;

BDGC成異面直線且夾角為60;

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正四棱錐的各條棱長都相等,且點分別是的中點.

1求證:

(2)在上是否存在點,使平面平面,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在斜三棱柱,底面為正三角形,, ,

.

(1)求異面直線所成角的余弦值;

(2)的中點,求面與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1, 在直角梯形中, , , , 為線段的中點. 沿折起,使平面 平面,得到幾何體,如圖2所示.

1)求證: 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù)得下面柱狀圖:

以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,X表示2臺機器三年內(nèi)共需更換的易損零件數(shù)n表示購買2臺機器的同時購買的易損零件數(shù).

(1)X的分布列;

(2)若要求P(Xn)0.5,確定n的最小值;

(3)以購買易損零件所需費用的期望值為決策依據(jù),n19n20之中選其一,應選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來我國電子商務行業(yè)迎來發(fā)展的新機遇,2017年雙11全天交易額達到1682億元,為規(guī)范和評估該行業(yè)的情況,相關管理部門制定出針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行評價,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.

(1)完成關于商品和服務評價的列聯(lián)表,判斷能否在犯錯誤的概率不超過0.001的前提下,認為商品好評與服務好評有關?

(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全為好評的次數(shù)為隨機變量

①求對商品和服務全為好評的次數(shù)的分布列;

②求的數(shù)學期望和方差.

附:臨界值表:

的觀測值: (其中

關于商品和服務評價的列聯(lián)表:

查看答案和解析>>

同步練習冊答案