【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(12分)
(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.
【答案】
(1)
解:由前三年六月份各天的最高氣溫?cái)?shù)據(jù),
得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,
根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).
如果最高氣溫不低于25,需求量為500瓶,
如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,
如果最高氣溫低于20,需求量為200瓶,
∴六月份這種酸奶一天的需求量不超過(guò)300瓶的概率p= = .
(2)
解:當(dāng)溫度大于等于25°C時(shí),需求量為500,
Y=450×2=900元,
當(dāng)溫度在[20,25)°C時(shí),需求量為300,
Y=300×2﹣(450﹣300)×2=300元,
當(dāng)溫度低于20°C時(shí),需求量為200,
Y=400﹣(450﹣200)×2=﹣100元,
當(dāng)溫度大于等于20時(shí),Y>0,
由前三年六月份各天的最高氣溫?cái)?shù)據(jù)得,溫度大于等于20°C的天數(shù)有:
90﹣(2+16)=72,
∴估計(jì)Y大于零的概率P= .
【解析】(1.)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過(guò)300瓶的概率.
(2.)當(dāng)溫度大于等于25°C時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)°C時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20°C時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某氣象站觀測(cè)點(diǎn)記錄的連續(xù)4天里,AQI指數(shù)M與當(dāng)天的空氣水平可見(jiàn)度y(單位cm)的情況如下表1:
M | 900 | 700 | 300 | 100 |
y | 0.5 | 3.5 | 6.5 | 9.5 |
哈爾濱市某月AQI指數(shù)頻數(shù)分布如下表2:
M | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
頻數(shù) | 3 | 6 | 12 | 6 | 3 |
(1)設(shè)x= ,根據(jù)表1的數(shù)據(jù),求出y關(guān)于x的回歸方程; (參考公式: ;其中 , )
(2)小張開(kāi)了一家洗車(chē)店,經(jīng)統(tǒng)計(jì),當(dāng)M不高于200時(shí),洗車(chē)店平均每天虧損約2000元;當(dāng)M在200至400時(shí),洗車(chē)店平均每天收入約4000元;當(dāng)M大于400時(shí),洗車(chē)店平均每天收入約7000元;根據(jù)表2估計(jì)小張的洗車(chē)店該月份平均每天的收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位員工人參加“學(xué)雷鋒”志愿活動(dòng),按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)下表是年齡的頻率分布表,求正整數(shù)的值;
區(qū)間 | |||||
人數(shù) |
(2)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取人,年齡在第組抽取的員工的人數(shù)分別是多少?
(3)在(2)的前提下,從這人中隨機(jī)抽取人參加社區(qū)宣傳交流活動(dòng),求至少有人年齡在第組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.
(1)寫(xiě)出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的最大距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為 ,(t為參數(shù)),直線l2的參數(shù)方程為 ,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.(10分)
(1)寫(xiě)出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)﹣ =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角△ABC中,AB⊥BC,D為BC邊上異于B、C的一點(diǎn),以AB為直徑作⊙O,并分別交AC,AD于點(diǎn)E,F(xiàn).
(Ⅰ)證明:C,E,F(xiàn),D四點(diǎn)共圓;
(Ⅱ)若D為BC的中點(diǎn),且AF=3,F(xiàn)D=1,求AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在對(duì)學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí),其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”. 參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(1)某校高一年級(jí)有男生500人,女生400人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如下表:
等級(jí) | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 男生 | 女生 | 總計(jì) |
非優(yōu)秀 | |||
總計(jì) |
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高一學(xué)生中隨機(jī)抽取3人. ①求所選3人中恰有2人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=4sinθ.
(1)寫(xiě)出圓C1的極坐標(biāo)方程,并求圓C1與圓C2的公共弦的長(zhǎng)度d;
(2)設(shè)射線θ=與圓C1異于極點(diǎn)的交點(diǎn)為A,與圓C2異于極點(diǎn)的交點(diǎn)為B,求|AB|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com