【題目】已知 為橢圓 的左、右焦點,點在橢圓上,且面積的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于 兩點, 的面積為1, , ),當(dāng)點在橢圓上運動時,試問是否為定值?若是定值,求出這個定值;若不是定值,求出的取值范圍.

【答案】(I);(II)為定值.

【解析】試題分析:

(1)利用題意求得,即有橢圓的方程為

(2)利用題意聯(lián)立直線與橢圓的方程,設(shè)而不求可得為定值.

試題解析:(Ⅰ)由題意得,

當(dāng)為短軸端點時, 面積取得最大值,

解得,

即有橢圓的方程為

(Ⅱ)設(shè)直線的方程為,代入橢圓方程,

可得,

設(shè) ,

即有, ,

,

化簡可得

設(shè),由,可得

又因為點在橢圓上,所以有

整理可得: ,

即為

,

可得

可得,即有為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 則異面直線BA1與AC1所成的角等于( 。

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓外切,與圓內(nèi)切.

(Ⅰ)試求動圓圓心的軌跡的方程;

(Ⅱ)與圓相切的直線與軌跡交于兩點,若直線的斜率成等比數(shù)列,試求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時,ax2+bx+30的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莫數(shù)學(xué)建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標桿的高度,仰角 .

(Ⅰ)該小組已經(jīng)測得一組的值, ,請推測的值;

(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列給出四組函數(shù),表示同一函數(shù)的是(
A.f(x)=x,g(x)=
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=x,g(x)=
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的三個質(zhì)量指標分別為x,yz,用綜合指標Sxyz評價該產(chǎn)品的等級.若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機抽取2件產(chǎn)品,

() 用產(chǎn)品編號列出所有可能的結(jié)果;

() 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標S都等于4求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax3+bx+ +2,滿足f(﹣3)=﹣2015,則f(3)的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a是實數(shù),f(x)=a﹣ (x∈R).
(1)證明不論a為何實數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關(guān)于x的不等式f(x+1)+f(1﹣2x)>0.

查看答案和解析>>

同步練習(xí)冊答案