【題目】某外賣企業(yè)兩位員工今年月某天日派送外賣量的數(shù)據(jù)(單位:件),如莖葉圖所示針對這天的數(shù)據(jù),下面說法錯誤的是( )
A.阿朱的日派送量的眾數(shù)為B.阿紫的日派送量的中位數(shù)為
C.阿朱的日派送量的中位數(shù)為D.阿朱的日派送外賣量更穩(wěn)定
【答案】C
【解析】
根據(jù)莖葉圖的數(shù)據(jù)計(jì)算出阿朱和阿紫的日派送量的眾數(shù)和中位數(shù),可判斷A、B、C選項(xiàng)的正誤,根據(jù)阿朱和阿紫的日派送量數(shù)據(jù)的分布情況可可判斷D選項(xiàng)的正誤.
由莖葉圖可知,阿朱的日派送量由小到大分別為、、、、、、、、、,眾數(shù)為,中位數(shù)為,
阿紫的日派送量由小到大分別為、、、、、、、、、,中位數(shù)為,
由莖葉圖可知,阿朱的日派送量數(shù)據(jù)相對集中,阿紫的日派送量數(shù)據(jù)相對分散,所以,阿朱的日派送外賣量更穩(wěn)定.
所以,A、B、D選項(xiàng)正確,C選項(xiàng)錯誤.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是一個的方格表,在每一個小方格內(nèi)各填一個正整數(shù).若中的一個方格表的所有數(shù)的和為10的倍數(shù),則稱其為“好矩形”;若中的一個的小方格不包含于任何一個好矩形,則稱其為“壞格”.求中壞格個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列{}的公比為 q(q > 0,q = 1),前 n 項(xiàng)和為 Sn,且 2a1a3 = a4,數(shù)列{}的前 n 項(xiàng)和 Tn 滿足2Tn = n(bn - 1),n ∈N*,b2 = 1.
(1) 求數(shù)列 {},{}的通項(xiàng)公式;
(2) 是否存在常數(shù) t,使得 {Sn+ } 為等比數(shù)列?說明理由;
(3) 設(shè) cn =,對于任意給定的正整數(shù) k(k ≥2), 是否存在正整數(shù) l,m(k < l < m), 使得 ck,c1,cm 成等差數(shù)列?若存在,求出 l,m(用 k 表示),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了各級城市的大街小巷,為了解我市的市民對共享單車的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了人進(jìn)行分析.若得分低于分,說明不滿意,若得分不低于分,說明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1.
(Ⅰ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);
滿意 | 不滿意 | 合計(jì) | |
歲以下 | |||
歲以上 | |||
合計(jì) |
(Ⅱ)先采用分層抽樣的方法從歲及以下的網(wǎng)友中選取人,再從這人中隨機(jī)選出人,將頻率視為概率,求選出的人中至少有人是不滿意的概率.
(Ⅲ)將頻率視為概率,從參與調(diào)查的歲以上的網(wǎng)友中,隨機(jī)選取人,記其中滿意度為滿意的人數(shù)為,求的分布列和數(shù)學(xué)期望.
參考格式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸入的m=1,則輸出數(shù)據(jù)的總個數(shù)為( 。
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,且右焦點(diǎn)到右準(zhǔn)線的距離為1.過軸上一點(diǎn) 為常數(shù),且的直線與橢圓交于兩點(diǎn),與交于點(diǎn),是弦的中點(diǎn),直線與交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試判斷以為直徑的圓是否經(jīng)過定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)的對稱美在中國傳統(tǒng)文化中多有體現(xiàn),譬如如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的和諧美.如果能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,下列說法正確的是( )
A.對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個
B.可以是某個圓的“優(yōu)美函數(shù)”
C.正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”
D.函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:對于任意,仍為數(shù)列中的項(xiàng),則稱數(shù)列為“回歸數(shù)列”.
(1)己知(),判斷數(shù)列是否為“回歸數(shù)列”,并說明理由;
(2)若數(shù)列為“回歸數(shù)列”,,,且對于任意,均有成立.①求數(shù)列的通項(xiàng)公式;②求所有的正整數(shù)s,t,使得等式成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com