【題目】如圖,在三棱柱中,平面平面,四邊形是正方形,點,分別是棱,的中點,,,.
(1)求證:;
(2)求二面角的余弦值;
(3)若點在棱上,且,判斷平面與平面是否平行,并說明理由.
【答案】(1)證明見解析(2)(3)平面與平面不平行;詳見解析
【解析】
(1)根據(jù)平面平面和得平面.,得;
(2)以為原點,建立空間直角坐標系,根據(jù)兩個半平面的法向量可求得結(jié)果;
(3)根據(jù)平面的法向量與向量不垂直可得結(jié)論.
(1)證明:因為四邊形是正方形,所以.
又因為平面平面,
平面平面,
所以平面.
又因為平面,
所以.
(2)由(1)知,,,所以.
又,,,
所以.所以.
如圖,以為原點,建立空間直角坐標系.
所以,,,.
則有,,,
平面的一個法向量為.
設平面的一個法向量為,
又,,
由得
令,則,.所以.
設二面角的平面角為,則.
由題知,二面角為銳角,所以其余弦值為.
(3)平面與平面不平行.理由如下:
由(2)知,平面的一個法向量為,,
所以,所以與平面不平行.
又因為平面,
所以平面與平面不平行.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值點;
(2)定義:若函數(shù)的圖像與直線有公共點,我們稱函數(shù)有不動點.這里。,若,如果函數(shù)存在不動點,求實數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列四個結(jié)論:
①函數(shù)的最小正周期是;
②函數(shù)在區(qū)間上是減函數(shù);
③函數(shù)的圖象關(guān)于直線對稱;
④函數(shù)的圖象可由函數(shù)的圖象向左平移個單位得到其中所有正確結(jié)論的編號是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面為正方形,平面,,點為線段的動點.記與所成角的最小值為,當為線段中點時,二面角的大小為,二面角的大小為,則,,的大小關(guān)系是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】整數(shù)n使得多項式f(x)=3x3-nx-n-2,可以表示為兩個非常數(shù)整系數(shù)多項式的乘積,所有n的可能值的和為______ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:在長方體中,,點是線段上的一個動點,則①的最小值等于__________;②直線與平面所成角的正切值的取值范圍為____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個有窮數(shù)列的每相鄰兩項之間插入這兩項的和,形成新的數(shù)列,我們把這樣的操作稱為該數(shù)列的一次“Z拓展”.如數(shù)列1,2第1次“Z拓展”后得到數(shù)列1,3,2,第2次“Z拓展”后得到數(shù)列1,4,3,5,2.設數(shù)列a,b,c經(jīng)過第n次“Z拓展”后所得數(shù)列的項數(shù)記為Pn,所有項的和記為Sn.
(1)求P1,P2;
(2)若Pn≥2020,求n的最小值;
(3)是否存在實數(shù)a,b,c,使得數(shù)列{Sn}為等比數(shù)列?若存在,求a,b,c滿足的條件;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com