【題目】(1)求經(jīng)過點,且離心率為的橢圓的標(biāo)準(zhǔn)方程;
(2)已知雙曲線與橢圓:有相同的焦點,且過點,求雙曲線的標(biāo)準(zhǔn)方程.
【答案】(1)或.(2)
【解析】
(1)討論焦點在在x軸上或焦點在y軸上.根據(jù)離心率、端點坐標(biāo),結(jié)合橢圓中,可求得橢圓的標(biāo)準(zhǔn)方程.
(2)根據(jù)橢圓的標(biāo)準(zhǔn)方程,可求得焦點坐標(biāo).代入點的坐標(biāo),結(jié)合,即可求得雙曲線的標(biāo)準(zhǔn)方程.
(1)若橢圓的焦點在x軸上,設(shè)其方程為(),
因為經(jīng)過點,且離心率為,所以,,
又,得,
所以橢圓的標(biāo)準(zhǔn)方程為.
若橢圓的焦點在y軸上,設(shè)其方程為(),
因為經(jīng)過點,且離心率為,所以,,又,得,
所以橢圓的標(biāo)準(zhǔn)方程為.
綜上,橢圓的標(biāo)準(zhǔn)方程為或.
(2)因為橢圓的焦點為,,且雙曲線與橢圓有相同的焦點,
所以設(shè)雙曲線的標(biāo)準(zhǔn)方程為(,),
得,又雙曲線過點,得,
聯(lián)立解得
所以雙曲線的標(biāo)準(zhǔn)方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在梯形中,,為的中點,線段與交于點(如圖1).將沿折起到的位置,使得二面角為直二面角(如圖2).
(1)求證:平面;
(2)線段上是否存在點,使得與平面所成角的正弦值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)
(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差.
(。├迷撜龖B(tài)分布,求;
(ⅱ)某用戶從該工廠購買了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(。┑慕Y(jié)果,求.
附:.若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大城市往往人口密集,城市綠化在健康人民群眾肺方面發(fā)揮著非常重要的作用,歷史留給我們城市里的大山擁有品種繁多的綠色植物更是無價之寶.改革開放以來,有的地方領(lǐng)導(dǎo)片面追求政績,對森林資源野蠻開發(fā)受到嚴(yán)肅查處事件時有發(fā)生.2019年的春節(jié)后,廣西某市林業(yè)管理部門在“綠水青山就是金山銀山”理論的不斷指引下,積極從外地引進(jìn)甲、乙兩種樹苗,并對甲、乙兩種樹苗各抽測了10株樹苗的高度(單位:厘米),數(shù)據(jù)如下面的莖葉圖:
(1)據(jù)莖葉圖求甲、乙兩種樹苗的平均高度;
(2)據(jù)莖葉圖,運用統(tǒng)計學(xué)知識分析比較甲、乙兩種樹苗高度整齊情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型工廠有臺大型機(jī)器,在個月中,臺機(jī)器至多出現(xiàn)次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需名工人進(jìn)行維修.每臺機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺機(jī)器的能力,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障時有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.
(1)若每臺機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時有工人進(jìn)行維修,則稱工廠能正常運行.若該廠只有名維修工人,求工廠每月能正常運行的概率;
(2)已知該廠現(xiàn)有名維修工人.
(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底,為常數(shù),)有兩個極值點,且.
(Ⅰ)求的取值范圍;
(Ⅱ)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。
(1)求直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于,兩點,若點的坐標(biāo)為,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.
(1)求橢圓的方程;
(2)設(shè)點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負(fù)半軸上.若(為原點),且,求證:直線的斜率與直線MN的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)列{an}中,設(shè)a1為首項,其前n項和為Sn,若對任意的正整數(shù)m,n都有不等式S2m+S2n<2Sm+n(m≠n)恒成立,且2S6<S3.
(1)設(shè)數(shù)列{an}為等差數(shù)列,且公差為d,求的取值范圍;
(2)設(shè)數(shù)列{an}為等比數(shù)列,且公比為q(q>0且q≠1),求a1q的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com