【題目】已知過拋物線的焦點,斜率為的直線交拋物線于

兩點.

(1)求線段的長度;

(2) 為坐標(biāo)原點, 為拋物線上一點,若,求的值.

【答案】(1)9;(2) .

【解析】試題分析:(1)直線的方程與拋物線的方程聯(lián)立,再由根與系數(shù)的關(guān)系得利用拋物線的定義,即可求解弦的長度.

(2)由(1)可求得,從而兩點的坐標(biāo),進(jìn)而表示出向量的坐標(biāo),得出點的坐標(biāo),代入拋物線的方程,即可求解實數(shù)的值.

試題解析:

(1)直線AB的方程是y=2(x-2),與y2=8x聯(lián)立,消去y得x25x40

由根與系數(shù)的關(guān)系得x1+x2=5.由拋物線定義得|AB|=x1+x2+p=9,

(2)由x2-5x+4=0,得x11,x2=4,從而A(1,-2),B(4,4)

設(shè)(x3,y3)(1,-2)λ(4,4)(4λ1,4λ2)

又y8x3,即[2 (2λ1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險是車主必須為機(jī)動車購買的險種.若普通6座以下私家車投保交強(qiáng)險第一年的費用(基準(zhǔn)保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機(jī)制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:

交強(qiáng)險浮動因素和浮動費率比率表

浮動因素

浮動比率

A1

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險條例》汽車交強(qiáng)險價格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險保費高于基本保費的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,點M在線段PD上.
(1)求證:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小為45°,求BM與平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AB,CD是圓O中兩條互相垂直的直徑,兩個小圓與圓O以及AB,CD均相切,則往圓O內(nèi)投擲一個點,該點落在陰影部分的概率為(
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,an+1= 若S3n≤λ3n1恒成立,則實數(shù)λ的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=sinθ.
(Ⅰ)求曲線C1的極坐標(biāo)方程及曲線C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C1 , C2交于O,A兩點,過O點且垂直于OA的直線與曲線C1 , C2交于M,N兩點,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則;

②函數(shù)是偶函數(shù);

③函數(shù)的一個對稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,左、右焦點分別為

(1)求橢圓的方程;

(2)若直線與橢圓交于A,B兩點,與以為直徑的圓交于C,D兩點,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=2sin(π-x)sin x-(sin x-cos x)2.

(1)f(x)的單調(diào)遞增區(qū)間;

(2)y=f(x)的圖象上所有點的橫坐標(biāo)伸長到原來的2(縱坐標(biāo)不變),再把得到的圖象向左平移個單位,得到函數(shù)y=g(x)的圖象,g的值.

查看答案和解析>>

同步練習(xí)冊答案