【題目】2018年10月19日,由中國工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實)產(chǎn)業(yè)大會在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項目.現(xiàn)某廠商抓住商機在去年用450萬元購進一批VR設備,經(jīng)調試后今年投入使用,計劃第一年維修、保養(yǎng)費用22萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該設備使用后,每年的總收入為180萬元,設使用x年后設備的盈利額為y萬元.
(1)寫出y與x之間的函數(shù)關系式;
(2)使用若干年后,當年平均盈利額達到最大值時,求該廠商的盈利額.
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)內有一塊以為圓心半徑為20米的圓形區(qū)域.廣場,為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設計方案:如圖,在圓形區(qū)域內搭建露天舞臺,舞臺為扇形區(qū)域,其中兩個端點,分別在圓周上;觀眾席為梯形內且在圓外的區(qū)域,其中,,且,在點的同側.為保證視聽效果,要求觀眾席內每一個觀眾到舞臺處的距離都不超過60米.設.
(1)求的長(用表示);
(2)對于任意,上述設計方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(I)求函數(shù)在點(1,0)處的切線方程;
(II)設實數(shù)k使得f(x)< kx恒成立,求k的范圍;
(III)設函數(shù),求函數(shù)h(x)在區(qū)間上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上一點P(3,t)到其焦點的距離為4.
(1)求p的值;
(2)過點Q(1,0)作兩條直線l1 , l2與拋物線分別交于點A、B和C、D,點M,N分別是線段AB和CD的中點,設直線l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線MN過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的通項為an=log(n+1)(n+2)(n∈N*),我們把使乘積a1a2a3…an為整數(shù)的n叫做“優(yōu)數(shù)”,則在(0,2015]內的所有“優(yōu)數(shù)”的和為( 。
A.1024
B.2012
C.2026
D.2036
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC=BC=a,E是BC的中點,將△BAE沿AE折起到△B1AE的位置,使平面B1AE⊥平面AECD,F(xiàn)為B1D的中點.
(1)證明:B1E∥平面ACF;
(2)求平面ADB1與平面ECB1所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)=(2x-x2)ex
①(-,)是f(x)的單調遞減區(qū)間;
②f(-)是f(x)的極小值,f()是f(x)的極大值;
③f(x)沒有最大值,也沒有最小值;
④f(x)有最大值,沒有最小值.
其中判斷正確的是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA按米處理).
(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB;
(2)立柱的頂端有一長為2米的彩桿MN,且MN繞其中點O在攝影愛好者與立柱所在的平面內旋轉.在彩桿轉動的任意時刻,攝影愛好者觀察彩桿MN的視角(設為)是否存在最大值?若存在,請求出取最大值時的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com