【題目】四棱錐P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,過點B作直線l∥PD,Q為直線l上一動點.
(1)求證:QP⊥AC;
(2)當二面角Q﹣AC﹣P的大小為120°時,求QB的長;
(3)在(2)的條件下,求三棱錐Q﹣ACP的體積.
【答案】
(1)證明:設AC∩BD=O,
∵底面ABCD是菱形,∴AC⊥BD,
∵PD⊥平ABCD,AC平面ABCD,
∴PD⊥AC,又PD平面PBD,BD平面PBD,PD∩BD=D,
∴AC⊥平面PBD,
∵BQ∥PD,∴Q∈平面PBD,
∴PQ平面PBD,
∴AC⊥PQ.
(2)解:連結OP,OQ,
∵△ACD是邊長為2的等邊三角形,
∴OD=OB= ,∴tan∠POD= ,
∴∠POD小于60°,
∴Q點位于B點上方,
由(1)知AC⊥平面PDBQ,
∴AC⊥OP,AC⊥OQ,
∴∠POQ為二面角P﹣AC﹣D的平面角,
在Rt△POD中, ,設QB=x,則Rt△OBQ中, ,
在直角梯形PDBQ中, ,
在△POQ中,由余弦定理得 ,故6﹣4x>0且3x2﹣16x+5=0,
解得 ,即 .
(3)解:由(2)知: ,
∴ ,
∵AC⊥面POQ,
∴ .
【解析】(1)由AC⊥BD,AC⊥PD可得AC⊥平面PBD,故而AC⊥PQ;(2)計算∠POD的大小判斷Q點大體位置,設BQ=x,計算三角形POQ的邊長,利用余弦定理解出x;(3)代入公式V= 計算.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos(2x+φ),|φ|≤ ,若f( ﹣x)=﹣f(x),則要得到y(tǒng)=sin2x的圖象只需將y=f(x)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),橢圓C的右焦點F的坐標為 ,短軸長為2.
(I)求橢圓C的方程;
(II)若點P為直線x=4上的一個動點,A,B為橢圓的左、右頂點,直線AP,BP分別與橢圓C的另一個交點分別為M,N,求證:直線MN恒過點E(1,0).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是首項 ,公比 的等比數(shù)列.設 (n∈N*). (Ⅰ)求證:數(shù)列{bn}為等差數(shù)列;
(Ⅱ)設cn=an+b2n , 求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+4|﹣|x﹣1|.
(1)解不等式f(x)>3;
(2)若不等式f(x)+1≤4a﹣5×2a有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如下表所示),規(guī)定80分及以上者晉級成功,否則晉級失。
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學期望E(X).
(參考公式: ,其中n=a+b+c+d)
P(K2≥k0) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且f(﹣x)=f(x),則( )
A.f(x)在(0, )單調遞增
B.f(x)在( , )單調遞減
C.f(x)在( , )單調遞增
D.f(x)在( ,π)單調遞增
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )+cos(2x+ )+sin2x
(1)求函數(shù)f(x)的單調遞減區(qū)間;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若f( )= ,a=2,b= ,求c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com