【題目】某校為了解甲、乙兩班學(xué)生的學(xué)業(yè)水平,從兩班中各隨機抽取人參加學(xué)業(yè)水平等級考試,得到學(xué)生的學(xué)業(yè)成績莖葉圖如圖:

Ⅰ)通過莖葉圖比較甲、乙兩班學(xué)生的學(xué)業(yè)成績平均值及方差的大小;(只需寫出結(jié)論)

(Ⅱ)根據(jù)學(xué)生的學(xué)業(yè)成績,將學(xué)業(yè)水平分為三個等級:

根據(jù)所給數(shù)據(jù),頻率可以視為相應(yīng)的概率.

i)從甲、乙兩班中各隨機抽取,記事件:“抽到的甲班學(xué)生的學(xué)業(yè)水平高于乙班學(xué)生的學(xué)業(yè)水平等級”,發(fā)生的概率;

ii從甲班中隨機抽取,為學(xué)業(yè)水平優(yōu)秀的人數(shù),的分布列和數(shù)學(xué)期望.

【答案】;;)(i;ii見解析.

【解析】試題分析:(Ⅰ)由莖葉圖能得到, ;(Ⅱ)(i)記A1、A2A3分別表示事件:甲班學(xué)生學(xué)業(yè)水平等級為一般、良好、優(yōu)秀;記B1、B2、B3分別表示事件:乙班學(xué)生學(xué)業(yè)水平等級為一般、良好、優(yōu)秀,由P(C)=P(A2B1+PA3B1+PA3B2),能求出C發(fā)生的概率;(ii)從甲班隨機抽取1人,其學(xué)業(yè)水平優(yōu)秀的概率為,則X=0,1,2,XB2, ),由此能求出X的分布列和數(shù)學(xué)期望.

解析:

;

)(i)記分別表示事件:甲班學(xué)生學(xué)業(yè)水平成績?yōu)橐话?/span>,良好,優(yōu)秀;

分別表示事件:乙班學(xué)生學(xué)業(yè)水平成績?yōu)橐话?/span>,良好,優(yōu)秀;

ii)從甲班隨機抽取,其學(xué)業(yè)水平優(yōu)秀的概率為,

所以,隨機變量的所有可能取值為,.

, ,

隨機變量的分布列是:

數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)設(shè),當(dāng)時,若對任意,當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)在圓內(nèi)直徑所對的圓周角是直角.此定理在橢圓內(nèi)(以焦點在軸上的標(biāo)準(zhǔn)形式為例)可表述為“過橢圓的中心的直線交橢圓于兩點,點是橢圓上異于的任意一點,當(dāng)直線斜率存在時,它們之積為定值.”試求此定值;

(2)在圓內(nèi)垂直于弦的直徑平分弦.類比(1)將此定理推廣至橢圓,不要求證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)下列命題:( )

函數(shù)的圖象關(guān)于原點對稱; 函數(shù)是周期函數(shù);

當(dāng),函數(shù)取最大值;函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是

(A)①③ (B)②③ (C)①④ (D)②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的正方體ABCD-A1B1C1D1中,EBC的中點,FDD1的中點,

1)求證:CF∥平面A1DE;

2)求平面A1DE與平面A1DA夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的長軸長為,過點的直線軸垂直,橢圓的離心率, 為橢圓的左焦點,.

求此橢圓的方程;

設(shè)是此橢圓上異于的任意一點, , 為垂足,延長到點使得.連接并延長,交直線于點的中點,判定直線與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現(xiàn)象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情況下,船在漲潮時駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天的時間與水深關(guān)系表:

時刻

200

500

800

1100

1400

1700

2000

2300

水深(米)

7.5

5.0

2.5

5.0

7.5

5.0

2.5

5.0

經(jīng)長期觀測,這個港口的水深與時間的關(guān)系,可近似用函數(shù)ft)=Asinωt++b來描述.

1)根據(jù)以上數(shù)據(jù),求出函數(shù)ft)=Asinωt++b的表達(dá)式;

2)一條貨船的吃水深度(船底與水面的距離)為4.25米,安全條例規(guī)定至少要有2米的安全間隙(船底與洋底的距離),該船在一天內(nèi)(0002400)何時能進(jìn)入港口然后離開港口?每次在港口能停留多久?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點,且在軸上截得的弦長為4.

(1)求動圓圓心的軌跡的方程;

(2)點為軌跡上任意一點,直線為軌跡上在點處的切線,直線交直線于點,過點交軌跡于點,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共13分)

已知, 1, ,對于表示UV中相對應(yīng)的元素不同的個數(shù).

)令,存在m,使得,寫出m的值;

)令,若,求證: ;

)令,若,求所有之和.

查看答案和解析>>

同步練習(xí)冊答案